I am using the new Kinect v2 and I am getting the depth map of the Kinect.
After I get the depth map I convert the depth data from Depth Space to Camera Space.
As far as I understand this is done, by converting all the X,Y coordinate of each pixel to Camera Space + adding the depth value as Z coordinate (also Kinect gives the depth value in millimetres so it is also converted to hold meters).
Because of this, the point cloud is actually on 2D grid extended with the depth value. The visualization also confirms this, since it is easy to notice that the points are ordered in a grid due to the above conversation.
For visualization I am using OpenGL the old fashion way (glBegin(...) and glEnd()).
I want to create a mesh out of the points. I kind of managed to do it with GL_TRIANGLES, but then I have lot of duplicated vertices and edges. So I thought I should create a better triangulation with GL_TRIANGLE_STRIP, but I am stuck here because I can't come up with a good algorithm which can go through my 2D grid in a way that I can feed it to the GL_TRIANGLE_STRIP so it creates a nice surface.
The problems:
For each triangle's vertices I am checking the Z coordinate. If it exceeds a certain threshold I disregard the triangle => this might create holes in my 2D grid.
Some depth values are NaN, because the Kinect can't "see" there nothing (for example an object is too far or too close) => this also creates holes in the 2D grid.
Anybody has any suggestion what would be the best method to solve this issue?
If you're able to use the point cloud library, you could use the
class pcl::OrganizedFastMesh< PointInT >.
http://docs.pointclouds.org/trunk/classpcl_1_1_organized_fast_mesh.html
I use it to triangulate complete depth frames.
You can try also a delanauy triangulation in 3d and look for the tetrahedons on the exterior. An easy algorithm is the bowyer-watson with tetrahedons and circumspheres. Cgal is a good example.
Related
I'm working on a project to detect the position and orientation of a paper plane.
To collect the data, I'm using an Intel Realsense D435, which gives me accurate, clean depth data to work with.
Now I arrived at the problem of detecting the 2D paper plane silhouette from the 3D point cloud data.
Here is an example of the data (I put the plane on a stick for testing, this will not be in the final implementation):
https://i.stack.imgur.com/EHaEr.gif
Basically, I have:
A 3D point cloud with points on the plane
A 2D shape of the plane
I would like to calculate what rotations/translations are needed to align the 2D shape to the 3D point cloud as accurate as possible.
I've searched online, but couldn't find a good way to do it. One way would be to use Iterative Closest Point (ICP) to first take a calibration pointcloud of the plane in a known orientation, and align it with the current orientation. But from what I've heard, ICP doesn't perform well if the pointclouds aren't kind of already closely aligned at the start.
Any help is appreciated! Coding language doesn't matter.
Does your 3d point cloud have outliers? How many in what way?
How did you use ICP exactly?
One way would be using ICP, with a hand-crafted initial guess using
pcl::transformPointCloud (*cloud_in, *cloud_icp, transformation_matrix);
(to mitigate the problem that ICP needs to be close to work.)
What you actually want is the plane-model that describes the position and orientation of your point-cloud right?
A good estimator of your underlying function can be found with: pcl::ransac
pcl::ransace model consensus
You can then get the computedModel coefficents.
Now finding the correct transformation is just: How to calculate transformation matrix from one plane to another?
I'm trying to use Polygonal Surface Reconstruction with building point cloud to create simplified building models.
I did first tests with this CGAL code example and got first promising results.
As an example, I used this point cloud with vertex normals correctly oriented and got the following result from PSR. Some faces are clearly inverted (dark faces with normals pointing inside the watertight mesh and therefore not visible).
I was wondering if there a way to fix this face orientation error. I've noticed orientation methods on Polygon mesh but I don't really know to apply them to the resulting PSR surface mesh. As far as logic is concerned making normal point outwards should not be too complicated I guess.
Thanks in advance for any help
You can use the function reverse_face_orientations in the Polygon mesh processing package.
Note that this package has several functions that can help you to correct/modify your mesh.
I'm a newbie to CGAL library. However, I think it's a very suitable package for what I want to do.
I have a set of points representing a 3D surface (as shown in figure 1).
I want to fit a 3d triangulation on this surface. The surface is not closed and therefore does not occupy a volume. The code provided in poisson_reconstruction_example.cpp seems appropriate for this job. But the problem is that as a part of poisson_reconstruction algorithm it closes the ends and underneath of the surface to make it a volume (see figure2).
I was wondering:
1- Is there a way to do the triangulation on the surface just defined by the points, without getting a closed surface which encloses a finite volume?
This means that the final triangulation has boundary edges.
I'm happy with any Upsampling or smoothing which may be needed.
2- If the answer to the first question is no, then, is there any way to guarantee that the input points are the vertices of the generated triangles?
The poisson surface reconstruction generates a close surface that interpolates the point cloud given as input. It requires as input a point set with normals.
If you need a algorithm that only uses input points in the output, you can try the Advancing Front Surface Reconstruction algorithm.
I need to generate a tetrahedral (volume) mesh of thin-walled object object. Think of objects like a bottle or a plastic bowl, etc, which are mostly hollow. The volumetric mesh is needed for an FEM simulation. A surface mesh of the outside surface of the object is available from measurement, using e.g. octomap or KinectFusion. Therefore the vertex spacing is relatively regular. The inner surface of the object can be calculated from the outside surface by moving all points inside, since the wall thickness is known.
So far, I have considered the following approaches:
Create a 3D Delaunay triangulation (which would destroy the existing surface meshes) and then remove all tetrahedra which are not between the two original surfaces. For this check, it might be required to create an implicit surface representation of the 2 surfaces.
Create a 3D Delaunay triangulation and remove tetrahedra which are "inside" (in the hollow space) or "outside" (of the outer surface) with Alphashapes.
Close the outside and inside meshes and load them into tetgen as the outside hull and as a hole respectively.
These approaches seem to be a bit inelegant to me, and they still have some pitfalls. I would probably need several libraries/tools for them. For 1 and 2, probably tetgen or another FEM meshing tool would still be required to create well-conditioned tetrahedra. Does anyone have a more straight-forward solution? I guess this should also be a common problem in 3D printing.
Concerning tools/libraries, I have looked into PCL, meshlab and tetgen so far. They all seem to do only part of the job. Ideally, I would like to use only open source libraries and avoid tools which require manual intervention.
One way is to:
create triangular mesh of surface points,
extrude (move) that surface to inner for a given thickness. That produces volume (triangular prism) mesh of a wall,
each prism can be split in three tetrahedrons.
The problem I see is aspect ratio.
A single layer of tetrahedra will not reproduce shell or bending behavior very well. A single element through the thickness will already require a large mesh. Putting more than one will likely break the bank in order to keep aspect ratios and angles acceptable.
I'd prefer brick or thick shell elements to tetrahedra in this case. I think the modeling will be easier and the behavior will be more faithful to the physics.
all
I try to obtain one triangle mesh from one point cloud. The mesh is expected to be manifold, the triangles are well shaped or equilateral and the distribution of the points are adaptive in terms of the curvature.
There are valuable information provided on this website.
robust algorithm for surface reconstruction from 3D point cloud?
Mesh generation from points with x, y and z coordinates
I try Poisson reconstruction algorithm, but the triangles are not well shaped.
So I need to improve the quality of the triangles. I learn that centroidal voronoi tessellation(CVT) can achieve that, but I don't know whether the operation will introduce non-manifold vertices and self-intersection. I hope to get some information about it from you.
The mesh from the following post looks pretty good.
How to fill polygon with points regularly?
Delaunay refinement algorithm is used. Can delaunay refinement algorithm apply to triangle mesh directly? Do I first need to delaunay triangulation of the point cloud of the mesh, and then use the information from delaunay triangulation to perform delaunay refinement?
Thanks.
Regards
Jogging
I created the image in the mentioned post: You can insert all points into a Delaunay triangulation and then create a Zone object (area) consisting of these triangles. Then you call refine(pZone,...) to get a quality mesh. Other options are to create the Zone from constraint edges or as the result of a boolean operation. However, this library is made for 2D and 2.5D. The 3D version will not be released before 2014.
Do you know the BallPivoting approach?