What are some factors that could affect program runtime? - process

I'm doing some work on profiling the behavior of programs. One thing I would like to do is get the amount of time that a process has run on the CPU. I am accomplishing this by reading the sum_exec_runtime field in the Linux kernel's sched_entity data structure.
After testing this with some fairly simple programs which simply execute a loop and then exit, I am running into a peculiar issue, being that the program does not finish with the same runtime each time it is executed. Seeing as sum_exec_runtime is a value represented in nanoseconds, I would expect the value to differ within a few microseconds. However, I am seeing variations of several milliseconds.
My initial reaction was that this could be due to I/O waiting times, however it is my understanding that the process should give up the CPU while waiting for I/O. Furthermore, my test programs are simply executing loops, so there should be very little to no I/O.
I am seeking any advice on the following:
Is sum_exec_runtime not the actual time that a process has had control of the CPU?
Does the process not actually give up the CPU while waiting for I/O?
Are there other factors that could affect the actual runtime of a process (besides I/O)?
Keep in mind, I am only trying to find the actual time that the process spent executing on the CPU. I do not care about the total execution time including sleeping or waiting to run.
Edit: I also want to make clear that there are no branches in my test program aside from the loop, which simply loops for a constant number of iterations.
Thanks.

Your question is really broad, but you can incur context switches for various reasons. Calling most system calls involves at least one context switch. Page faults cause contexts switches. Exceeding your time slice causes a context switch.
sum_exec_runtime is equal to utime + stime from /proc/$PID/stat, but sum_exec_runtime is measured in nanoseconds. It sounds like you only care about utime which is the time your process has been scheduled in user mode. See proc(5) for more details.
You can look at nr_switches both voluntary and involuntary which are also part of sched_entity. That will probably account for most variation, but I would not expect successive runs to be identical. The exact time that you get for each run will be affected by all of the other processes running on the system.
You'll also be affected by the amount of file system cache used on your system and how many file system cache hits you get in successive runs if you are doing any IO at all.
To give a very concrete and obvious example of how other processes can affect the run time of the current process, think about if you are exceeding your physical RAM constraints. If your program asks for more RAM, then the kernel is going to spend more time swapping. That time swapping will be accounted in stime but will vary depending on how much RAM you need and how much RAM is available. There are lot's of other ways that other processes can affect your process's run time. This is just one example.
To answer your 3 points:
sum_exec_runtime is the actual time the scheduler ran the process including system time
If you count switching to the kernel as the process giving up the CPU, then yes, but it does not necessarily mean a different user process may get the CPU back once the kernel is done.
I think I've already answered this question that there are lot's of factors.

Related

Scheduling on multiple cores with each list in each processor vs one list that all processes share

I have a question about how scheduling is done. I know that when a system has multiple CPUs scheduling is usually done on a per processor bases. Each processor runs its own scheduler accessing a ready list of only those processes that are running on it.
So what would be the pros and cons when compared to an approach where there is a single ready list that all processors share?
Like what issues are there when assigning processes to processors and what issues might be caused if a process always lives on one processor? In terms of the mutex locking of data structures and time spent waiting on for the locks are there any issues to that?
Generally there is one, giant problem when it comes to multi-core CPU systems - cache coherency.
What does cache coherency mean?
Access to main memory is hard. Depending on the memory frequency, it can take between a few thousand to a few million cycles to access some data in RAM - that's a whole lot of time the CPU is doing no useful work. It'd be significantly better if we minimized this time as much as possible, but the hardware required to do this is expensive, and typically must be in very close proximity to the CPU itself (we're talking within a few millimeters of the core).
This is where the cache comes in. The cache keeps a small subset of main memory in close proximity to the core, allowing accesses to this memory to be several orders of magnitude faster than main memory. For reading this is a simple process - if the memory is in the cache, read from cache, otherwise read from main memory.
Writing is a bit more tricky. Writing to the cache is fast, but now main memory still holds the original value. We can update that memory, but that takes a while, sometimes even longer than reading depending on the memory type and board layout. How do we minimize this as well?
The most common way to do so is with a write-back cache, which, when written to, will flush the data contained in the cache back to main memory at some later point when the CPU is idle or otherwise not doing something. Depending on the CPU architecture, this could be done during idle conditions, or interleaved with CPU instructions, or on a timer (this is up to the designer/fabricator of the CPU).
Why is this a problem?
In a single core system, there is only one path for reads and writes to take - they must go through the cache on their way to main memory, meaning the programs running on the CPU only see what they expect - if they read a value, modified it, then read it back, it would be changed.
In a multi-core system, however, there are multiple paths for data to take when going back to main memory, depending on the CPU that issued the read or write. this presents a problem with write-back caching, since that "later time" introduces a gap in which one CPU might read memory that hasn't yet been updated.
Imagine a dual core system. A job starts on CPU 0 and reads a memory block. Since the memory block isn't in CPU 0's cache, it's read from main memory. Later, the job writes to that memory. Since the cache is write-back, that write will be made to CPU 0's cache and flushed back to main memory later. If CPU 1 then attempts to read that same memory, CPU 1 will attempt to read from main memory again, since it isn't in the cache of CPU 1. But the modification from CPU 0 hasn't left CPU 0's cache yet, so the data you get back is not valid - your modification hasn't gone through yet. Your program could now break in subtle, unpredictable, and potentially devastating ways.
Because of this, cache synchronization is done to alleviate this. Application IDs, address monitoring, and other hardware mechanisms exist to synchronize the caches between multiple CPUs. All of these methods have one common problem - they all force the CPU to take time doing bookkeeping rather than actual, useful computations.
The best method of avoiding this is actually keeping processes on one processor as much as possible. If the process doesn't migrate between CPUs, you don't need to keep the caches synchronized, as the other CPUs won't be accessing that memory at the same time (unless the memory is shared between multiple processes, but we'll not go into that here).
Now we come to the issue of how to design our scheduler, and the three main problems there - avoiding process migration, maximizing CPU utilization, and scalability.
Single Queue Multiprocessor scheduling (SQMS)
Single Queue Multiprocessor schedulers are what you suggested - one queue containing available processes, and each core accesses the queue to get the next job to run. This is fairly simple to implement, but has a couple of major drawbacks - it can cause a whole lot of process migration, and does not scale well to larger systems with more cores.
Imagine a system with four cores and five jobs, each of which takes about the same amount of time to run, and each of which is rescheduled when completed. On the first run through, CPU 0 takes job A, CPU 1 takes B, CPU 2 takes C, and CPU 3 takes D, while E is left on the queue. Let's then say CPU 0 finishes job A, puts it on the back of the shared queue, and looks for another job to do. E is currently at the front of the queue, to CPU 0 takes E, and goes on. Now, CPU 1 finishes job B, puts B on the back of the queue, and looks for the next job. It now sees A, and starts running A. But since A was on CPU 0 before, CPU 1 now needs to sync its cache with CPU 0, resulting in lost time for both CPU 0 and CPU 1. In addition, if two CPUs both finish their operations at the same time, they both need to write to the shared list, which has to be done sequentially or the list will get corrupted (just like in multi-threading). This requires that one of the two CPUs wait for the other to finish their writes, and sync their cache back to main memory, since the list is in shared memory! This problem gets worse and worse the more CPUs you add, resulting in major problems with large servers (where there can be 16 or even 32 CPU cores), and being completely unusable on supercomputers (some of which have upwards of 1000 cores).
Multi-queue Multiprocessor Scheduling (MQMS)
Multi-queue multiprocessor schedulers have a single queue per CPU core, ensuring that all local core scheduling can be done without having to take a shared lock or synchronize the cache. This allows for systems with hundreds of cores to operate without interfering with one another at every scheduling interval, which can happen hundreds of times a second.
The main issue with MQMS comes from CPU Utilization, where one or more CPU cores is doing the majority of the work, and scheduling fairness, where one of the processes on the computer is being scheduled more often than any other process with the same priority.
CPU Utilization is the biggest issue - no CPU should ever be idle if a job is scheduled. However, if all CPUs are busy, so we schedule a job to a random CPU, and a different CPU ends up becoming idle, it should "steal" the scheduled job from the original CPU to ensure every CPU is doing real work. Doing so, however, requires that we lock both CPU cores and potentially sync the cache, which may degrade any speedup we could get by stealing the scheduled job.
In conclusion
Both methods exist in the wild - Linux actually has three different mainstream scheduler algorithms, one of which is an SQMS. The choice of scheduler really depends on the way the scheduler is implemented, the hardware you plan to run it on, and the types of jobs you intend to run. If you know you only have two or four cores to run jobs, SQMS is likely perfectly adequate. If you're running a supercomputer where overhead is a major concern, then an MQMS might be the way to go. For a desktop user - just trust the distro, whether that's a Linux OS, Mac, or Windows. Generally, the programmers for the operating system you've got have done their homework on exactly what scheduler will be the best option for the typical use case of their system.
This whitepaper describes the differences between the two types of scheduling algorithms in place.

What mechanism is used to account CPU usage for a process, particularly `sys` (time spent in kernel)

What is the mechanism used to account for cpu time, including that spent in-kernel (sys in the output of top)?
I'm thinking about limitations here because I remember reading about processes being able avoid showing up their cpu usage, if they yield before completing their time slice.
Context
Specifically, I'm working on some existing code in KVM virtualization.
if (guest_tsc < tsc_deadline)
__delay(tsc_deadline - guest_tsc);
The code is called with interrupts disabled. I want to know if Linux will correctly account for long busy-waits with interrupts disabled.
If it does, it would help me worry less about certain edge case configurations which might cause long, but bounded busy-waits. System administrators could at least notice if it was bad enough to degrade throughput (though necessarily latency), and identify the specific process responsible (in this case, QEMU, and the process ID would allow identifying the specific virtual machine).
In Linux 4.6, I believe process times are still accounted by sampling in the timer interrupt.
/*
* Called from the timer interrupt handler to charge one tick to current
* process. user_tick is 1 if the tick is user time, 0 for system.
*/
void update_process_times(int user_tick)
So it may indeed be possible for a process to game this approximation.
In answer to my specific query, it looks like CPU time spent with interrupts disabled will not be accounted to the specific process :(.

operating system - context switches

I have been confused about the issue of context switches between processes, given round robin scheduler of certain time slice (which is what unix/windows both use in a basic sense).
So, suppose we have 200 processes running on a single core machine. If the scheduler is using even 1ms time slice, each process would get its share every 200ms, which is probably not the case (imagine a Java high-frequency app, I would not assume it gets scheduled every 200ms to serve requests). Having said that, what am I missing in the picture?
Furthermore, java and other languages allows to put the running thread to sleep for e.g. 100ms. Am I correct in saying that this does not cause context switch, and if so, how is this achieved?
So, suppose we have 200 processes running on a single core machine. If
the scheduler is using even 1ms time slice, each process would get its
share every 200ms, which is probably not the case (imagine a Java
high-frequency app, I would not assume it gets scheduled every 200ms
to serve requests). Having said that, what am I missing in the
picture?
No, you aren't missing anything. It's the same case in the case of non-pre-emptive systems. Those having pre-emptive rights(meaning high priority as compared to other processes) can easily swap the less useful process, up to an extent that a high-priority process would run 10 times(say/assume --- actual results are totally depending on the situation and implementation) than the lowest priority process till the former doesn't produce the condition of starvation of the least priority process.
Talking about the processes of similar priority, it totally depends on the Round-Robin Algorithm which you've mentioned, though which process would be picked first is again based on the implementation. And, Windows and Unix have same process scheduling algorithms. Windows and Unix does utilise Round-Robin, but, Linux task scheduler is called Completely Fair Scheduler (CFS).
Furthermore, java and other languages allows to put the running thread
to sleep for e.g. 100ms. Am I correct in saying that this does not
cause context switch, and if so, how is this achieved?
Programming languages and libraries implement "sleep" functionality with the aid of the kernel. Without kernel-level support, they'd have to busy-wait, spinning in a tight loop, until the requested sleep duration elapsed. This would wastefully consume the processor.
Talking about the threads which are caused to sleep(Thread.sleep(long millis)) generally the following is done in most of the systems :
Suspend execution of the process and mark it as not runnable.
Set a timer for the given wait time. Systems provide hardware timers that let the kernel register to receive an interrupt at a given point in the future.
When the timer hits, mark the process as runnable.
I hope you might be aware of threading models like one to one, many to one, and many to many. So, I am not getting into much detail, jut a reference for yourself.
It might appear to you as if it increases the overhead/complexity. But, that's how threads(user-threads created in JVM) are operated upon. And, then the selection is based upon those memory models which I mentioned above. Check this Quora question and answers to that one, and please go through the best answer given by Robert-Love.
For further reading, I'd suggest you to read from Scheduling Algorithms explanation on OSDev.org and Operating System Concepts book by Galvin, Gagne, Silberschatz.

How can I speed up a Mac app processing 5000 independent tasks?

I have a long running (5-10 hours) Mac app that processes 5000 items. Each item is processed by performing a number of transforms (using Saxon), running a bunch of scripts (in Python and Racket), collecting data, and serializing it as a set of XML files, a SQLite database, and a CoreData database. Each item is completely independent from every other item.
In summary, it does a lot, takes a long time, and appears to be highly parallelizable.
After loading up all the items that need processing it, the app uses GCD to parallelize the work, using dispatch_apply:
dispatch_apply(numberOfItems, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^(size_t i) {
#autoreleasepool {
...
}
});
I'm running the app on a Mac Pro with 12 cores (24 virtual). So I would expect to have 24 items being processed at all times. However, I found through logging that the number of items being processed varies between 8 and 24. This is literally adding hours to the run time (assuming it could work on 24 items at a time).
On the one hand, perhaps GCD is really, really smart and it is already giving me the maximum throughput. But I'm worried that, because much of the work happens in scripts that are spawned by this app, maybe GCD is reasoning from incomplete information and isn't making the best decisions.
Any ideas how to improve performance? After correctness, the number one desired attribute is shortening how long it takes this app to run. I don't care about power consumption, hogging the Mac Pro, or anything else.
UPDATE: In fact, this looks alarming in the docs: "The actual number of tasks executed by a concurrent queue at any given moment is variable and can change dynamically as conditions in your application change. Many factors affect the number of tasks executed by the concurrent queues, including the number of available cores, the amount of work being done by other processes, and the number and priority of tasks in other serial dispatch queues." (emphasis added) It looks like having other processes doing work will adversely affect scheduling in the app.
It'd be nice to be able to just say "run these blocks concurrently, one per core, don't try to do anything smarter".
If you are bound and determined, you can explicitly spawn 24 threads using the NSThread API, and have each of those threads pull from a synchronized queue of work items. I would bet money that performance would get noticeably worse.
GCD works at its most efficient when the work items submitted to it never block. That said, the workload you're describing is rather complex and rife with opportunities for your threads to block. For starters, you're spawning a bunch of other processes. Right here, this means that you're already relying on the OS to divvy up time/resources between your master task and these slave tasks. Other than setting the OS priority of each subprocess, the OS scheduler has no way to know which processes are more important than others, and by default, your subprocesses are going to have the same priority as their parent. That said, it doesn't sound like you have anything to gain by tweaking process priorities. I'm assuming you're blocking the master task thread that's waiting for the slave tasks to complete. That is effectively parking that thread -- it can do no useful work. But like I said, I don't think there's much to be gained by tweaking the OS priorities of your slave tasks, because this really sounds like it's an I/O bound workflow...
You go on to describe three I/O-heavy operations ("serializing it as a set of XML files, a SQLite database, and a CoreData database.") So now you have all these different threads and processes vying for what is presumably a shared bulk storage device. (i.e. unless you're writing to 24 different databases, on 24 separate hard drives, one for each core, your process is ultimately going to be serialized at the disk accesses.) Even if you had 24 different hard drives, writing to a hard drive (even an SSD) is comparatively slow. Your threads are going to be taken off of the CPU they were running on (so that another thread that's waiting can run) for virtually any blocking disk write.
If you wanted to maximize the performance you're getting out of GCD, you would probably want to rewrite all the stuff you're doing in subtasks in C/C++/Objective-C, bringing them in-process, and then conducting all the associated I/O using dispatch_io primitives. For API where you don't control the low-level reads and writes, you would want to carefully manage and tune your workload to optimize it for the hardware you have. For instance, if you have a bunch of stuff to write to a single, shared SQLite database, there's no point in ever having more than one thread trying to write to that database at once. You'd be better off making one thread (or a serial GCD queue) to write to SQLite and submitting tasks to that after pre-processing is done.
I could go on for quite a while here, but the bottom line is that you've got a complex, seemingly I/O bound workflow here. At the highest-level, CPU utilization or "number of running threads" is going to be a particularly poor measure of performance for such a task. By using sub-processes (i.e. scripts), you're putting a lot of control into the hands of the OS, which knows effectively nothing about your workload a priori, and therefore can do nothing except use its general scheduler to divvy up resources. GCD's opaque thread pool management is really the least of your problems.
On a practical level, if you want to speed things up, go buy multiple, faster (i.e. SSD) hard drives, and rework your task/workflow to utilize them separately and in parallel. I suspect that would yield the biggest bang for your buck (for some equivalence relation of time == money == hardware.)

calculating burst time in operating system

how burst time calculated for process in os in real life scenario.say computer is having 5 processes to execute and is using shortest job first algorithm.then how OS will know in advance the burst time of each process??
Since an operation system can not guess the burst time of a process a priori, usually one of the two following approaches is used:
The process is annoted by the developer (e.g., by using methods of critical execution path analysis)
The OS uses the execution time of a former process instance of the very same code the do an estimation.
However, in "real life", SJF is rarely used, at least not as pure algorithm. It is more of theoretical interest.