Unable to reload data as a csv file from IPython Notebook - api

I have the following IPython Notebook, I am trying to access data base of movies from rotten tomatoes website.
But Rotten Tomatoes limits to 10,000 API requests a day
So I don't want to re-run this function every time when I restart the notebook, I am trying to save and reload this data as a CSV file. When I convert the data to a csv file I am getting this processing symbol[*] inside IPython notebook. After some time I am getting the following error
ConnectionError: HTTPConnectionPool(host='api.rottentomatoes.com', port=80): Max retries exceeded with url: /api/public/v1.0/movie_alias.json?apikey=5xr26r2qtgf9h3kcq5kt6y4v&type=imdb&id=0113845 (Caused by <class 'socket.gaierror'>: [Errno 11002] getaddrinfo failed)
Is this problem due to slow internet connection? Should I make some changes to my code? Kindly help me with this.
The code for the file is shown below:
%matplotlib inline
import json
import requests
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
api_key = '5xr26r2qtgf9h3kcq5kt6y4v'
movie_id = '770672122' # toy story 3
url = 'http://api.rottentomatoes.com/api/public/v1.0/movies/%s/reviews.json' % movie_id
#these are "get parameters"
options = {'review_type': 'top_critic', 'page_limit': 20, 'page': 1, 'apikey': api_key}
data = requests.get(url, params=options).text
data = json.loads(data) # load a json string into a collection of lists and dicts
print json.dumps(data['reviews'][0], indent=2) # dump an object into a json string
from io import StringIO
movie_txt = requests.get('https://raw.github.com/cs109/cs109_data/master/movies.dat').text
movie_file = StringIO(movie_txt) # treat a string like a file
movies = pd.read_csv(movie_file,delimiter='\t')
movies
#print the first row
movies[['id', 'title', 'imdbID', 'year']]
def base_url():
return 'http://api.rottentomatoes.com/api/public/v1.0/'
def rt_id_by_imdb(imdb):
"""
Queries the RT movie_alias API. Returns the RT id associated with an IMDB ID,
or raises a KeyError if no match was found
"""
url = base_url() + 'movie_alias.json'
imdb = "%7.7i" % imdb
params = dict(id=imdb, type='imdb', apikey=api_key)
r = requests.get(url, params=params).text
r = json.loads(r)
return r['id']
def _imdb_review(imdb):
"""
Query the RT reviews API, to return the first page of reviews
for a movie specified by its IMDB ID
Returns a list of dicts
"""
rtid = rt_id_by_imdb(imdb)
url = base_url() + 'movies/{0}/reviews.json'.format(rtid)
params = dict(review_type='top_critic',
page_limit=20,
page=1,
country='us',
apikey=api_key)
data = json.loads(requests.get(url, params=params).text)
data = data['reviews']
data = [dict(fresh=r['freshness'],
quote=r['quote'],
critic=r['critic'],
publication=r['publication'],
review_date=r['date'],
imdb=imdb, rtid=rtid
) for r in data]
return data
def fetch_reviews(movies, row):
m = movies.irow(row)
try:
result = pd.DataFrame(_imdb_review(m['imdbID']))
result['title'] = m['title']
except KeyError:
return None
return result
def build_table(movies, rows):
dfs = [fetch_reviews(movies, r) for r in range(rows)]
dfs = [d for d in dfs if d is not None]
return pd.concat(dfs, ignore_index=True)
critics = build_table(movies, 3000)
critics.to_csv('critics.csv', index=False)
critics = pd.read_csv('critics.csv')

Related

Pandas: Creating multiple new columns from function with multiple output values

Im trying to scrape a website for multiple values regarding a list of books. The links to the book pages are stored in a dataframe. Now I need a function that iterates those links and adds the book values to new columns in the dataframe. I don't want to request the page again every time I'm scraping a new book value, so I want to do it all in one function.
The problem is the function then returns multiple values (e.g. book_title and book_rating) which I don't know how to best add to the dataframe.
I tried the following, which I know can't work but I'm stuck:
import requests as rq
from bs4 import BeautifulSoup as bs
import pandas as pd
#function to get the book page
def get_book_page(page):
# Construct the URL
books_page_url = page
# Get the HTML page content using requests
response = rq.get(books_page_url, headers = headers)
# Ensure that the response is valid
if response.status_code != 200:
print('Status code:', response.status_code)
raise Exception('Failed to fetch web page ' + books_page_url)
# Construct a beautiful soup document
doc = bs(response.content, "html.parser")
return doc
#function to scrape the book title
def scrape_book_title(book_content):
try:
title_tag = book_content.find("h1", class_="bc-heading bc-color-base bc-size-large bc-text-bold").text.strip()
except:
title_tag = "fehlt"
return title_tag
#function to scrape the book rating
def scrape_book_rating(book_content):
star_tag = book_content.find("li", class_="bc-list-item ratingsLabel")
try:
rating_tag = star_tag.find("span", class_="bc-text bc-pub-offscreen").text.strip()
except:
rating_tag = "fehlt"
return rating_tag
#function I'm trying to fix
def get_book_title(links):
bs_page = get_book_page(links)
bs_content = bs_page.find("ul", class_="bc-list bc-spacing-s2 bc-color-secondary bc-list-nostyle")
book_title = scrape_book_title(bs_content)
book_rating = scrape_book_rating(bs_content)
return book_title, book_rating
#here I would like to add the columns "A_Titel" and "A_Rating" with the values of "book_title" and "book_rating"
df['A_Titel'], df['A_Rating'] = df.apply(lambda x: get_book_title(x.Link), axis=1)

ValueError: NaTType does not support timetuple when converting a dataframe to dictionary using to_dict('records')

I'm running this flask app
from flask import Flask, request, jsonify, render_template
from flask_cors import CORS, cross_origin
import json
import pandas as pd
# Create the app object
app = Flask(__name__)
cors = CORS(app, resources= {r"/*": {'origins' : "*"}})
# importing function for calculations
from Record_Matching import Matching
#app.route("/query", methods = ['get'])
#cross_origin()
def query():
# service_account_creds = request.json
query1 = request.args.get('query1', type = str)
query2 = request.args.get('query2', type = str)
querycolumns = request.args.get('querycolumns')
project_id = request.args.get('project_id', type = str)
service_account_creds = request.args.get('service_account')
SS = request.args.get('SS', type = float)
TT = request.args.get('TT', type = float)
result = Matching(query1,query2, SS,TT, service_account_creds, project_id, querycolumns)
return result
if __name__ == "__main__":
app.run(host="localhost", port=8080, debug=True)
and I'm importing the matching function from this python scripts
import pandas as pd
from google.cloud import bigquery
from google.oauth2 import service_account
import recordlinkage
from recordlinkage.preprocessing import phonetic
from pandas.io.json import json_normalize
import uuid
from uuid import uuid4
import random
import string
import json
import ast
# Results to data frame function
def gcp2df(sql, client):
query = client.query(sql)
results = query.result()
return results.to_dataframe()
# Exporting df to bigquery - table parameter example: "dataset.tablename"
# def insert(df, table):
# client = bigquery.Client()
# job_config = bigquery.LoadJobConfig(write_disposition=bigquery.job.WriteDisposition.WRITE_TRUNCATE)
# return client.load_table_from_dataframe(df, table, job_config = job_config)
def pair(df1, df2, TT, querycolumns):
# function to take pair from list and compare:
L = querycolumns
l=len(querycolumns)
p1=0
p2=1
# To generate phonetics we need to make sure all names are in english.
# thus we'll replace non-english words by random english strings
df1[L[p1]] = df1[L[p1]].astype(str)
df2[L[p2]] = df2[L[p2]].astype(str)
for i in range(0,len(df1)):
if df1[L[p1]][i].isascii() == False:
df1[L[p1]][i] = ''.join(random.choices(string.ascii_lowercase, k=5))
for i in range(0,len(df2)):
if df2[L[p2]][i].isascii() == False:
df2[L[p2]][i] = ''.join(random.choices(string.ascii_lowercase, k=5))
compare = recordlinkage.Compare()
df1["phonetic_given_name"] = phonetic(df1[L[p1]], "soundex")
df2["phonetic_given_name"] = phonetic(df2[L[p2]], "soundex")
df1["initials"] = (df1[L[p1]].str[0] + df1[L[p1]].str[-1])
df2["initials"] = (df2[L[p2]].str[0] + df2[L[p2]].str[-1])
indexer = recordlinkage.Index()
indexer.block('initials')
candidate_links = indexer.index(df1, df2)
compare.exact('phonetic_given_name', 'phonetic_given_name', label="phonetic_given_name")
# O(n) a function that uses two pointers to track consecutive pairs for the input list
while p2 <=l:
compare.string(L[p1], L[p2], method='jarowinkler',threshold = TT, label=L[p1])
p1+=2
p2+=2
features = compare.compute(candidate_links,df1, df2)
return features
def Matching(query1,query2, SS,TT, service_account_creds, project_id, querycolumns):
service_account_creds = ast.literal_eval(service_account_creds)
credentials = service_account.Credentials(service_account_creds, service_account_creds['client_email'],
service_account_creds['token_uri'])
job_config = bigquery.LoadJobConfig()
client = bigquery.Client( project = project_id)
SS=int(SS)
TT=float(TT)
df1 = gcp2df("""{}""".format(query1), client)
df2 = gcp2df("""{}""".format(query2), client)
querycolumns = json.loads(querycolumns)
querycolumns = list(querycolumns.values())
features = pair(df1, df2, TT, querycolumns)
features['Similarity_score'] = features.sum(axis=1)
features = features[features['Similarity_score']>=SS].reset_index()
final = features[['level_0', 'level_1']]
final.rename(columns= {'level_0':'df1_index', 'level_1':'df2_index'}, inplace= True)
final['Unique_ID'] = [uuid.uuid4() for _ in range(len(final.index))]
final['Unique_ID'] = final['Unique_ID'].astype(str)
final['Similarity_Score'] = SS
final_duplicates = final['df1_index'].value_counts().max()
# insert(final,"test-ahmed-project.Record_Linkage.Matching_Indices")
message = "Mission accomplished!, your highest number of duplicates is " + str(final_duplicates)
return {'message':message,'final':final.to_dict('records'), 'df1':df1.to_dict('records')}
I'm not sure why when I return df1 as a dictionary it shows ValueError error when I try to to use the function from flask app, but when I run it in a jupytor notebook using the same dataframe that I'm taking from bigquery, it works just fine, so why does it not work on the flask app?
I tried to_dict('record') to convert a dataframe to a dictionary,
it looking online many resources suggest the error exists because the data contains missing values, but it shouldn't be a problem because when I try converting the same dataframe to dictionary in jupyter notebook it works just fine.

How to improve the speed of getting request content via the request module

The below functions extract content from 'http://thegreyhoundrecorder.com.au/form-guides/' and append all content to a list. The function works fine, although the speed at which the content is scraped from the website is slow. This line tree = html.fromstring(page.content) in particular slows down the process. Is there a way I can improve on the speed of my request.
import lxml
from lxml import html
import requests
import re
import pandas as pd
from requests.exceptions import ConnectionError
greyhound_url = 'http://thegreyhoundrecorder.com.au/form-guides/'
def get_page(url):
"""fxn take page url and return the links to the acticle(Field) we
want to scrape in a list.
"""
page = requests.get(url)
tree = html.fromstring(page.content)
my_list = tree.xpath('//tbody/tr/td[2]/a/#href') # grab all link
print('Length of all links = ', len(my_list))
my_url = [page.url.split('/form-guides')[0] + str(s) for s in my_list]
return my_url
def extract_data(my_url):
"""
fxn take a list of urls and extract the needed infomation from
greyhound website.
return: a list with the extracted field
"""
new_list = []
try:
for t in my_url:
print(t)
page_detail = requests.get(t)
tree_1 = html.fromstring(page_detail.content)
title = ''.join(tree_1.xpath('//div/h1[#class="title"]/text()'))
race_number = tree_1.xpath("//tr[#id = 'tableHeader']/td[1]/text()")
Distance = tree_1.xpath("//tr[#id = 'tableHeader']/td[3]/text()")
TGR_Grade = tree_1.xpath("//tr[#id = 'tableHeader']/td[4]/text()")
TGR1 = tree_1.xpath("//tbody/tr[#class='fieldsTableRow raceTipsRow']//div/span[1]/text()")
TGR2 = tree_1.xpath("//tbody/tr[#class='fieldsTableRow raceTipsRow']//div/span[2]/text()")
TGR3 = tree_1.xpath("//tbody/tr[#class='fieldsTableRow raceTipsRow']//div/span[3]/text()")
TGR4 = tree_1.xpath("//tbody/tr[#class='fieldsTableRow raceTipsRow']//div/span[4]/text()")
clean_title = title.split(' ')[0].strip()
#clean title and extract track number
Track = title.split(' ')[0].strip()
#clean title and extract track date
date = title.split('-')[1].strip()
#clean title and extract track year
year = pd.to_datetime('now').year
#convert date to pandas datetime
race_date = pd.to_datetime(date + ' ' + str(year)).strftime('%d/%m/%Y')
#extract race number
new_rn = []
for number in race_number:
match = re.search(r'^(.).*?(\d+)$', number)
new_rn.append(match.group(1) + match.group(2))
new_list.append((race_date,Track,new_rn,Distance,TGR_Grade,TGR1,TGR2,TGR3,TGR4))
return new_list
except ConnectionError as e:
print('Connection error, connect to a stronger network or reload the page')

Pandas combine mutilple columns in a BQ table to generate payload for FB conversions api

I am reading from a bigquery table to generate a payload to upload to FB conversions api.
cols=["payload","client_user_agent","event_source_url"]
I am copying the column values directly from the bq table as I am unable to print the full output of the dataframe in note book.
payload="{"pageDetail":{"pageName":"Confirmation","pageContentType":"cart","pageSiteSection":"cart","breadcrumbs":[{"title":"Home","url":"/en/home.html"},{"title":"Cart","url":"/cart"},{"title":"Confirmation","url":"/order-confirmation="}],"pageCategory":"Home","pageCategory1":"Cart","pageCategory2":"Confirmation","proBtbGlobalHeader":false},"orderDetails":{"hceid":"3b94a","orderConfirmed":true,"orderDate":"2021-01-15","orderId":"0123","unique":2,"pricingSummary":{"total":54.01},"items":[{"productId":"0456","quantity":1,"shippingAddress":{"postalCode":"V4N 3X3"},"promotion":{"voucherCode":null},"clickToInstall":{"eligible":false}},{"productId":"0789","quantity":1,"fulfillment":{"fulfillmentCost":""},"shippingAddress":{"postalCode":"A4N 3Y3"},"promotion":{"voucherCode":null},"clickToInstall":{"eligible":false}}],"billingAddress":{"postalCode":"M$X1A7"}},"event":{"type":"Load","page":"Confirmation","timestamp":1610706772998,"language":"English","url":"https://www"}}"
client_user_agent="Mozilla/5.0"
event_source_url= "https://www.def.com="
I need the value for email=[orderDetails][hceid] and value=["orderDetails"]["pricingSummary"]["total"]
Initially all the payload I wanted was in a single column and I was able to achieve the uploads with the following code
import time
from facebook_business.adobjects.serverside.event import Event
from facebook_business.adobjects.serverside.event_request import EventRequest
from facebook_business.adobjects.serverside.user_data import UserData
from facebook_business.adobjects.serverside.custom_data import CustomData
from facebook_business.api import FacebookAdsApi
import pandas as pd
import json
FacebookAdsApi.init(access_token=access_token)
query='''SELECT JSON_EXTRACT(payload, '$') AS payload FROM `project.dataset.events` WHERE eventType = 'Page Load' AND pagename = "Confirmation" limit 1'''
df = pd.read_gbq(query, project_id= project, dialect='standard')
payload = df.to_dict(orient="records")
for i in payload:
#print(type(i["payload"]))
k = json.loads(i["payload"])
email = k["orderDetails"]["hcemuid"]
user_data = UserData(email)
value=k["orderDetails"]["pricingSummary"]["total"]
order_id = k["orderDetails"]["orderId"]
custom_data = CustomData(
currency='CAD',
value=value)
event = Event(
event_name='Purchase',
event_time=int(time.time()),
user_data=user_data,
custom_data=custom_data,
event_id = order_id,
data_processing_options= [])
events = [event]
#print(events)
event_request = EventRequest(
events=events,
test_event_code='TEST8609',
pixel_id=pixel_id)
#print(event_request)
a=event_request.execute()
print(a)
Now there are additional values client_user_agent that needs to be part of user data and event_source_url as parts of events in the above code that are present as two different columns in GBQ table.
I have tried similar code as above for multiple columns but I am receiving a
TypeError: Object of type Series is not JSON serializable
So I tried concatenating the columns and then create a json serializable object but I am not able to do an upload.
Below is where I am stuck and lost and not sure how to proceed further any inputs appreciated.
import time
from facebook_business.adobjects.serverside.event import Event
from facebook_business.adobjects.serverside.event_request import EventRequest
from facebook_business.adobjects.serverside.user_data import UserData
from facebook_business.adobjects.serverside.custom_data import CustomData
from facebook_business.api import FacebookAdsApi
import pandas as pd
import json
FacebookAdsApi.init(access_token=access_token)
query='''SELECT payload AS payload,location.userAgent as client_user_agent,location.referrer as event_source_url FROM `project.Dataset.events` WHERE eventType = 'Page Load' AND pagename = "Confirmation" limit 1'''
df = pd.read_gbq(query, project_id= project, dialect='standard')
df.reset_index(drop=True, inplace=True)
payload = df.to_dict(orient="records")
print(payload)
## cols = ['payload', 'client_user_agent', 'event_source_url']
## df['combined'] = df[cols].apply(lambda row: ','.join(row.values.astype(str)), axis=1)
## del df["payload"]
## del df["client"]
## del df["source"]
## payload = df.to_dict(orient="records")
#tried concatinating all columns in a the dataframe but not able to create a valid json object for upload
columns = ['payload', 'client_user_agent', 'event_source_url']
df['payload'] = df['payload'].str.replace(r'}"$', '')
payload = df[columns].to_dict(orient='records')
print(payload)
## df = df.drop(columns=columns)
## pd.options.display.max_rows = 4000
# #print(payload)
# for i in payload:
# print(i["payload"])
# k = json.loads(i["payload"])
# email = k["orderDetails"]["hcemuid"]
# print(email)
I am following the instructions from this page:https://developers.facebook.com/docs/marketing-api/conversions-api
I have used the bigquery json_extract_scalar function to extract data from nested column instead of pandas which is a relatively better solution for my scenario.

dask how to define a custom (time fold) function that operates in parallel and returns a dataframe with a different shape

I am trying to implement a time fold function to be 'map'ed to various partitions of a dask dataframe which in turn changes the shape of the dataframe in question (or alternatively produces a new dataframe with the altered shape). This is how far I have gotten. The result 'res' returned on compute is a list of 3 delayed objects. When I try to compute each of them in a loop (last tow lines of code) this results in a "TypeError: 'DataFrame' object is not callable" After going through the examples for map_partitions, I also tried altering the input DF (inplace) in the function with no return value which causes a similar TypeError with NoneType. What am I missing?
Also, looking at the visualization (attached) I feel like there is a need for reducing the individually computed (folded) partitions into a single DF. How do I do this?
#! /usr/bin/env python
# Start dask scheduler and workers
# dask-scheduler &
# dask-worker --nthreads 1 --nprocs 6 --memory-limit 3GB localhost:8786 --local-directory /dev/shm &
from dask.distributed import Client
from dask.delayed import delayed
import pandas as pd
import numpy as np
import dask.dataframe as dd
import math
foldbucketsecs=30
periodicitysecs=15
secsinday=24 * 60 * 60
chunksizesecs=60 # 1 minute
numts = 5
start = 1525132800 # 01/05
end = 1525132800 + (3 * 60) # 3 minute
c = Client('127.0.0.1:8786')
def fold(df, start, bucket):
return df
def reduce_folds(df):
return df
def load(epoch):
idx = []
for ts in range(0, chunksizesecs, periodicitysecs):
idx.append(epoch + ts)
d = np.random.rand(chunksizesecs/periodicitysecs, numts)
ts = []
for i in range(0, numts):
tsname = "ts_%s" % (i)
ts.append(tsname)
gts.append(tsname)
res = pd.DataFrame(index=idx, data=d, columns=ts, dtype=np.float64)
res.index = pd.to_datetime(arg=res.index, unit='s')
return res
gts = []
load(start)
cols = len(gts)
idx1 = pd.DatetimeIndex(start=start, freq=('%sS' % periodicitysecs), end=start+periodicitysecs, dtype='datetime64[s]')
meta = pd.DataFrame(index=idx1[:0], data=[], columns=gts, dtype=np.float64)
dfs = [delayed(load)(fn) for fn in range(start, end, chunksizesecs)]
from_delayed = dd.from_delayed(dfs, meta, 'sorted')
nfolds = int(math.ceil((end - start)/foldbucketsecs))
cprime = nfolds * cols
gtsnew = []
for i in range(0, cprime):
gtsnew.append("ts_%s,fold=%s" % (i%cols, i/cols))
idx2 = pd.DatetimeIndex(start=start, freq=('%sS' % periodicitysecs), end=start+foldbucketsecs, dtype='datetime64[s]')
meta = pd.DataFrame(index=idx2[:0], data=[], columns=gtsnew, dtype=np.float64)
folded_df = from_delayed.map_partitions(delayed(fold)(from_delayed, start, foldbucketsecs), meta=meta)
result = c.submit(reduce_folds, folded_df)
c.gather(result).visualize(filename='/usr/share/nginx/html/svg/df4.svg')
res = c.gather(result).compute()
for f in res:
f.compute()
Never mind! It was my fault, instead of wrapping my function in delayed I simply passed it to the map_partitions call like so and it worked.
folded_df = from_delayed.map_partitions(fold, start, foldbucketsecs, nfolds, meta=meta)