I have a requirement where I need to make sure only one message is being processed at a time by a mule flow.Flow is triggered by a quartz scheduler which reads one file from FTP server every time
My proposed solution is to keep a global variable "FLOW_STATUS" which will be set to "RUNNING" when a message is received and would be reset to "STOPPED" once the processing of message is done.
Any messages fed to the flow will check for this variable and abort if "FLOW_STATUS" is "RUNNING".
This setup seems to be working , but I was wondering if there is a better way to do it.
Is there any best practices around this or any inbuilt mule helper functions to achieve the same instead of relying on global variables
It seems like a more simple solution would be to set the maxActiveThreads for the flow to 1. In Mule, each message processed gets it's own thread. So setting the maxActiveThreads to 1 would effectively make your flow singled threaded. Other pending requests will wait in the receiver threads. You will need to make sure your receiver thread pool is large enough to accommodate all of the potential waiting threads. That may mean throttling back your quartz scheduler to allow time process the files so the receiver thread pool doesn't fill up. For more information on the thread pools and how to tune performance, here is a good link: http://www.mulesoft.org/documentation/display/current/Tuning+Performance
Related
I'm needing to execute a process in the future, let's say 20min, based on some event happening, but I may need to cancel that scheduled process depending on different factors. Or , i may need to restart the timer on the job, depending on another event....etc. You get the idea. All different permutations of this. Does anyone know of a good technology for this need? Maybe quartz(does quartz suck? does it do all these things?), maybe activemq, maybe some other job scheduling technology?
Thanks!
-Ron
ActiveMQ's scheduler is a good fit for this. The pattern can go something like:
Kick off a process (get some identifier)
Send a message to the ActiveMQ scheduler to fire in x time period
Message Consumer receives the timer message, pulls the identifier to check on the status
If process is done.. continue and finish up
If process needs more wait time, send another timer message to ActiveMQ
Everything is asynchronous, and code required is very minimal. The big advantage of using ActiveMQ is you can have multiple consumers listening for the scheduled message to provide for high availability.
We want to use delay feature from activeMQ to delay particural event. How does AMQ_SCHEDULED_DELAY work internaly? In documentation is information about scheduler but no information what mechanism it utilize to delay message. For that reason we are not sure how delaying is going to affect activeMQ. Does activeMQ utilize pooling or async to achive delay.
I ask this question because people from my organization want to pick diffrent technology. I do not have any proof delay from activeMQ is any better.
Here is link to source code. I was thinking of looking up code but I'm not good in java. Can anyone help?
Default implementation of ActiveMQ does utilize the polling.
Active MQ internally keep polling for the scheduled (or delayed) messages by a background scheduler thread. This thread read the list of scheduled events (or messages) and fires the jobs, reschedule repeating jobs as needed before firing the job event.
The list of scheduled events is stored in a sorted order in internal storage of activemq. So during poll, it just read event which are scheduled for earliest processing. Since the messages are persisted during enquing, scheduling many not have visible performance impact during processing.
However before adopting, you can setup your benchmark, without worries much internal implementation detail, to see that your performance/SLA requirement are getting met.
For more details, you may refer to Javadoc of job scheduler API. For default implementation can you refers to the code.
Hope this helps.
In looking at the source code mentioned by #skadya, the term "polling" is not what I interpret. It appears to use the Java Object class' wait(long timeout) method to determine when to "wake up" the thread that runs the jobs.
So, I wouldn't call it polling. I would call it an asynchronous mechanism in which the delay / timeout is set such that the thread will wake up (e.g. to run the next scheduled job at the appropriate time) via the timeout set to a value that is appropriate for the next scheduled job's commencement.
Javadoc for Object.wait(long timeout)
Note that the implementation for Object.wait is a native (i.e. non-java) implementation provided by the JDK / JRE / JVM for a given platform. For what that's worth.
It is possible to do performance test with activemq web console. There is an option to send message with configurable delay and number of messages to send. It doesn't answer my question but it seems like best option to compare two approaches.
I need to implement a logic on Retry. Inbound endpoint pushes the messages to Rest (Outbound). If the REST is unavailable, I need to retry for 1 time and put it in the queue. But the second upcoming messages should not do any retry, it has to directly put the messages in to queue until the REST service is available.
Once the service is available, I need to pushes all the messages from QUEUE to REST Service (in ordering) via batch job.
Questions:
How do I know the service is unavailable for my second message? If I use until Successful, for every message it do retry and put in queue. Plm is 2nd message shouldn't do retry.
For batch, I thought of using poll, but how to tell to poll, when the service becomes available to begin the batch process. (bcz,Poll is more of with configuring timings to run batch)?
Other ticky confuses me is - Here ordering has to be preserved. once the service is available. Queue messages ( i,e Batch) has to move first to REST Services then with real time. I doubt whether Is it applicable.
It will be very helpful for the quick response to implement the logic.
Using Mule: 3.5.1
I could try something like below: using flow controls
process a message; if exception or bad response code, set a variable/property like serviceAvailable=false.
subsequent message processing will first check the property serviceAvailable to process the messages. if property is false, en-queue the messages to a DB table with status=new/unprocessed
create a flow/scheduler to process the messages from DB sequentially, but it will not check the property serviceAvailable and call the rest service.
If service throws exception it will not store the messages in db again but if processes successfully change the property serviceAvailable=true and de-queue the messages or change the status. Add another property and set it to true if there are more messages in db table like moreDBMsg=true.
New messages should not be processed/consumed until moreDBMsg=false
once moreDBMsg=false and serviceAvailable=true start processing the messages from queue.
For the timeout I would still look at the response code and catch time-outs to determine if the call was successful or requires a retry. Practically you normally do multi threading anyway, so you have multiple calls in parallel anyway. Or simply one call starts before the other ends.
That is just quite normal.
But you can simply retry calls in a queue that time out. And after x amounts of time-outs you "skip" or defer the retry.
But all of this has been done using actual Mule flow components like either:
MEL http://www.mulesoft.org/documentation/display/current/Mule+Expression+Language+Reference
Or flow controls: http://www.mulesoft.org/documentation/display/current/Choice+Flow+Control+Reference
Or for example you reference a Spring Bean and do it in native Java code.
One possibility for the queue would be to persist it in a database. Mule has database connector that has a "poll" feature, see: http://www.mulesoft.org/documentation/display/current/JDBC+Transport+Reference#JDBCTransportReference-PollingTransport
I'm working on a system which amongst other things, runs payroll, a heavy load process. It is likely that soon, there may be so many requests to run payroll at peak times that the batch servers will be overwhelmed.
I'm looking to put together a proof of concept to cope with this by using MSMQ (probably replacing this with a commercial solution like nservicebus later). I using this this example as a basis. I can see how to set up the bindings and stick it together, but I still need a way to tell the subscribers hosted by WAS to only process the 'run heavy payroll process' message if they are not busy. Otherwise the messages on the queue will get picked up straightaway and we have the same problem as before.
Can I set up the subscribing service to say, "I'm busy, I can't take the message, leave it on the queue"? Does the queue need to be transactional?
If you're using WCF then there's no way to conditionally activate the channel thereby leaving the messages on the queue for later.
A better solution is to host the message receiver in a completely different process, for example as a windows service. These can then be enabled/disabled according to your service window requirement.
You also get the additional benefit of being able to very easily scale out the message receivers to handle greater loads (by hosting more instances of your receiver).
One way to do this is to have 2 queues, your polling always checks the high priority queue first, only if there are no items in that queue does it take an item from the other
I want to make a long-term process handler and use for it NServiceBus.
The role of NServiceBus is to hold an operations of that process (some kind of batch process)
The problem is that I have more than one type of long-term processes and each of them must run parallel, so pushing all messages in one queue is not that I have to do, I think.
Logic is:
1) Receive an order of a long-term process,
2) Divide it into N operations,
3) Each operation "pack" into the message and push in the queue,
4) According to the type of message, particular handler will handle messages and do the operation it holds.
I can't put all of the operations in one queue because my application should handle another messages, that requires fast response. If queue would be full of operations, another messages would wait a lot of time to be processed
So, does anyone know how to solve that problem ?
You should properly set the number of worker threads in the access queue config settings of the long-running process endpoint.
if you are using MSMQ check out this and especially the tag <MsmqTransportConfig ErrorQueue="error" NumberOfWorkerThreads="1" MaxRetries="5"/>
Every idle worker thread pull out a message from the queue although another thread is still processing another message. In this way you shoud achieve the parallel computation requirement you described in your scenario.