Finding out Force from Torque and Distance - physics

I have solid object that is spinning with a torque W, and I want to calculate the force F applied on a certain point that's D units away from the center of the object. All these values are represented in Vector3 format (x, y, z)
I know until now that W = D x F, where x is the cross product, so by expanding this I get:
Wx = Dy*Fz - Dz*Fy
Wy = Dz*Fx - Dx*Fz
Wz = Dx*Fy - Dy*Fx
So I have this equation, and I need to find (Fx, Fy, Fz), and I'm thinking of using the Simplex method to solve it.
Since the F vector can also have negative values, I split each F variable into 2 (F = G-H), so the new equation looks like this:
Wx = Dy*Gz - Dy*Hz - Dz*Gy + Dz*Hy
Wy = Dz*Gx - Dz*Hx - Dx*Gz + Dx*Hz
Wz = Dx*Gy - Dx*Hy - Dy*Gx + Dy*Hx
Next, I define the simplex table (we need <= inequalities, so I duplicate each equation and multiply it by -1.
Also, I define the objective function as: minimize (Gx - Hx + Gy - Hy + Gz - Hz).
The table looks like this:
Gx Hx Gy Hy Gz Hz <= RHS
============================================================
0 0 -Dz Dz Dy -Dy <= Wx = Gx
0 0 Dz -Dz -Dy Dy <= -Wx = Hx
Dz -Dz 0 0 Dx -Dx <= Wy = Gy
-Dz Dz 0 0 -Dx Dx <= -Wy = Hy
-Dy Dy Dx -Dx 0 0 <= Wz = Gz
Dy -Dy -Dx Dx 0 0 <= -Wz = Hz
============================================================
1 -1 1 -1 1 -1 0 = Z
The problem is that when I run it through an online solver I get Unbounded solution.
Can anyone please point me to what I'm doing wrong ?
Thanks in advance.
edit: I'm sure I messed up some signs somewhere (for example the Z should be defined as a max), but I'm sure I'm wrong when defining something more important.

There exists no unique solution to the problem as posed. You can only solve for the tangential projection of the force. This comes from the properties of the vector (cross) product - it is zero for collinear vectors and in particular for the vector product of a vector by itself. Therefore, if F is a solution of W = r x F, then F' = F + kr is also a solution for any k:
r x F' = r x (F + kr) = r x F + k (r x r) = r x F
since the r x r term is zero by the definition of vector product. Therefore, there is not a single solution but rather a whole linear space of vectors that are solutions.
If you restrict the solution to forces that have zero projection in the direction of r, then you could simply take the vector product of W and r:
W x r = (r x F) x r = -[r x (r x F)] = -[(r . F)r - (r . r)F] = |r|2F
with the first term of the expansion being zero because the projection of F onto r is zero (the dot denotes scalar (inner) product). Therefore:
F = (W x r) / |r|2
If you are also given the magnitude of F, i.e. |F|, then you can compute the radial component (if any) but there are still two possible solutions with radial components in opposing directions.

Quick dirty derivation...
Given D and F, you get W perpendicular to them. That's what a cross product does.
But you have W and D and need to find F. This is a bad assumption, but let's assume F was perpendicular to D. Call it Fp, since it's not necessarily the same as F. Ignoring magnitudes, WxD should give you the direction of Fp.
This ignoring magnitudes, so fix that with a little arithmetic. Starting with W=DxF applied to Fp:
mag(W) = mag(D)*mag(Fp) (ignoring geometry; using Fp perp to D)
mag(Fp) = mag(W)/mag(D)
Combining the cross product bit for direction with this stuff for magnitude,
Fp = WxD / mag(WxD) * mag(Fp)
Fp = WxD /mag(W) /mag(D) *mag(W) /mag(D)
= WxD / mag(D)^2.
Note that given any solution Fp to W=DxF, you can add any vector proportional to D to Fp to obtain another solution F. That is a totally free parameter to choose as you like.
Note also that if the torque applies to some sort of axle or object constrained to rotate about some axis, and F is applied to some oddball lever sticking out at a funny angle, then vector D points in some funny direction. You want to replace D with just the part perpendicular to the axle/axis, otherwise the "/mag(D)" part will be wrong.

So from your comment is clear that all rotations are spinning around center of gravity
in that case
F=M/r
F force [N]
M torque [N/m]
r scalar distance between center of rotation [m]
this way you know the scalar size of your Force
now you need the direction
it is perpendicular to rotation axis
and it is the tangent of the rotation in that point
dir=r x axis
F = F * dir / |dir|
bolds are vectors rest is scalar
x is cross product
dir is force direction
axis is rotation axis direction
now just change the direction according to rotation direction (signum of actual omega)
also depending on your coordinate system setup
so ether negate F or not
but this is in 3D free rotation very unprobable scenario
the object had to by symmetrical from mass point of view
or initial driving forces was applied in manner to achieve this
also beware that after first hit with any interaction Force this will not be true !!!
so if you want just to compute Force it generate on certain point if collision occurs is this fine
but immediately after this your spinning will change
and for non symmetric objects the spinning will be most likely off the center of gravity !!!
if your object will be disintegrated then you do not need to worry
if not then you have to apply rotation and movement dynamics
Rotation Dynamics
M=alpha*I
M torque [N/m]
alpha angular acceleration
I quadratic mass inertia for actual rotation axis [kg.m^2]
epislon''=omega'=alpha
' means derivation by time
omega angular speed
epsilon angle

Related

How do I determine the distance between v and PQ when v =[2,1,2] and PQ = [1,0,3]? P = [0,0,0] Q = [1,0,3]

What I have tried already: d = |v||PQ|sin("Theta")
Now, I need to determine what theta is, so I set up a position on a makeshift graph, the graph I made was on the xy plane only as the z plane complicates things needlessly for finding theta. So, I ended up with an acute angle, and if the angle is acute, then I have to find theta which according to dot product facts is greater than 0.
I do not have access to theta, so I used the same princples from cross dots. u * v = |u||v|cos("theta") but in this case, u and v are PQ and v. A vector is a vector, right?
so now I have theta = acos((v*PQ)/(|v||PQ))
with that I get (4sqrt(10))/15 = 32.5125173162 in degrees, so the angle is 32.5125173162 degrees.
So, now that I have theta, I plug it into my distance formula |v||PQ|sin(32.5125173162)
3*sqrt(10)*sin(32.5125173162) = 5.0990195136
or for the sake of simplicity, 5.1
I however want to know if this question is correct.
If it is NOT correct, what can I do to correct it? At what points did I use incorrect information?
This is not a question with a definitive answer in the back of the book, its a question on the side of a page that said: "try this!"
There are a couple of problems with this question.
From the context it looks like you mean for both v and PQ to be vectors. The "distance" between two vectors is an awkward (not well defined) question because vectors are not position bound.
You are using the cross product formula and I have no idea why:
|AxB| = |A||B|Sin(theta)
I think what you are actually trying to do is calculate the distance between the terminal points of the vectors, (2, 1, 2) and (1, 0, 3). Just use the Pythagorean Theorem (extended to 3D) for this.
d = sqrt( (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 )
d = sqrt( (2 - 1)^2 + (1 - 2)^2 + (2 - 3)^2 )
d = sqrt( 1^2 + (-1)^2 + (-1)^2 )
d = sqrt(3)
Edit:
If what you need really is the magnitude of the cross product, |AxB| then just find the cross product (using the determinant) and then calculate the magnitude of the result. There is no need for the formula you were using.

Coordinate Descent Algorithm in Julia for Least Squares not converging

As a warm-up to writing my own elastic net solver, I'm trying to get a fast enough version of ordinary least squares implemented using coordinate descent.
I believe I've implemented the coordinate descent algorithm correctly, but when I use the "fast" version (see below), the algorithm is insanely unstable, outputting regression coefficients that routinely overflow a 64-bit float when the number of features is of moderate size compared to the number of samples.
Linear Regression and OLS
If b = A*x, where A is a matrix, x a vector of the unknown regression coefficients, and y is the output, I want to find x that minimizes
||b - Ax||^2
If A[j] is the jth column of A and A[-j] is A without column j, and the columns of A are normalized so that ||A[j]||^2 = 1 for all j, the coordinate-wise update is then
Coordinate Descent:
x[j] <-- A[j]^T * (b - A[-j] * x[-j])
I'm following along with these notes (page 9-10) but the derivation is simple calculus.
It's pointed out that instead of recomputing A[j]^T(b - A[-j] * x[-j]) all the time, a faster way to do it is with
Fast Coordinate Descent:
x[j] <-- A[j]^T*r + x[j]
where the total residual r = b - Ax is computed outside the loop over coordinates. The equivalence of these update rules follows from noting that Ax = A[j]*x[j] + A[-j]*x[-j] and rearranging terms.
My problem is that while the second method is indeed faster, it's wildly numerically unstable for me whenever the number of features isn't small compared to the number of samples. I was wondering if anyone might have some insight as to why that's the case. I should note that the first method, which is more stable, still starts disagreeing with more standard methods as the number of features approaches the number of samples.
Julia code
Below is some Julia code for the two update rules:
function OLS_builtin(A,b)
x = A\b
return(x)
end
function OLS_coord_descent(A,b)
N,P = size(A)
x = zeros(P)
for cycle in 1:1000
for j = 1:P
x[j] = dot(A[:,j], b - A[:,1:P .!= j]*x[1:P .!= j])
end
end
return(x)
end
function OLS_coord_descent_fast(A,b)
N,P = size(A)
x = zeros(P)
for cycle in 1:1000
r = b - A*x
for j = 1:P
x[j] += dot(A[:,j],r)
end
end
return(x)
end
Example of the problem
I generate data with the following:
n = 100
p = 50
σ = 0.1
β_nz = float([i*(-1)^i for i in 1:10])
β = append!(β_nz,zeros(Float64,p-length(β_nz)))
X = randn(n,p); X .-= mean(X,1); X ./= sqrt(sum(abs2(X),1))
y = X*β + σ*randn(n); y .-= mean(y);
Here I use p=50, and I get good agreement between OLS_coord_descent(X,y) and OLS_builtin(X,y), whereas OLS_coord_descent_fast(X,y)returns exponentially large values for the regression coefficients.
When p is less than about 20, OLS_coord_descent_fast(X,y) agrees with the other two.
Conjecture
Since things agrees for the regime of p << n, I think the algorithm is formally correct, but numerically unstable. Does anyone have any thoughts on whether this guess is correct, and if so how to correct for the instability while retaining (most) of the performance gains of the fast version of the algorithm?
The quick answer: You forgot to update r after each x[j] update. Following is the fixed function which behaves like OLS_coord_descent:
function OLS_coord_descent_fast(A,b)
N,P = size(A)
x = zeros(P)
for cycle in 1:1000
r = b - A*x
for j = 1:P
x[j] += dot(A[:,j],r)
r -= A[:,j]*dot(A[:,j],r) # Add this line
end
end
return(x)
end

Determine angle of a straight line in 3D space

I have a straight line in space with an start and end point (x,y,z) and I am attempting to get the angle between this vector and the plane defined by z=0. I am using VB.NET
Here is a picture of the line in my 3d environment (the line I'm intersted in is circled in red) :
It is set to an angle of 70 degrees right now.
You need 2 rays to define an angle.
If you want the angle between a vector and a plane, it is defined for any vector in that plane. However, there is only one minimal value for that, which is the angle between a vector and its projection onto said plane.
Therefore, that minimal value is the one we take when we speak of the angle between a vector and a plane.
This value is also π/2 - the angle between your vector and the the vector that is normal to the plane.You can read more about it all on this site.
With v your vector (thus v.x = end.x - start.x and idem for y and z), n the normal to the plane and a the angle you are looking for, we know from the definition of a scalar product that:
<v,n> = ||v|| * ||n|| * cos(π/2 - a)
We know cos(π/2 - a) = sin(a), and the normal to the z=0 plane is simply the vector n = (0, 0, 1). Thus both the scalar product, v.x * n.x + v.y * n.y + v.z * n.z, and the norm of n, ||n|| = 1, can be simplified a lot. We get the following expression:
sin(a) = v.z / ||v||
Thus finally, the formula by taking the reciprocical of the sine and expliciting the norm of v:
a = Asin(v.z / sqrt( v.x*v.x + v.y*v.y + v.z*v.z ))
According to this documentation the Asin function exists in your System.Math class. It does, however, return the value in radians:
Return Value
Type: System.Double
An angle, θ, measured in radians, such that -π/2 ≤ θ ≤ π/2
-or-
NaN if d < -1 or d > 1 or d equals NaN.
Luckily the same System.Math class contains the value of π so that you can do the conversion:
a *= 180 / Math.PI

Plot a third point past the two previously plotted points. Cocos2d

Ok so let me try to explain this the best way that i can.
I have two points plotted 'A' and 'B' and I am trying to plot a third point 'C' so that it is past point 'B' but along the same slope. I have the angle of the line and I would post some code but I really have no idea where to begin.
any help would be awesome!
Just a little code that i do have
CGPoint vector = ccpSub(touchedPoint, fixedPoint);
CGFloat rotateAngle = -ccpToAngle(vector);
Assuming that by this you mean you need a 3rd point C added such that all the points are colinear, all you need to do is calculate the vector that takes you from A to B, and then generate a new point by adding multiples of this vector to the point B. Choose the multiple based on the distance you want C to be from B.
As an example, say A = (2,2), B = (4,3). Then the vector from A to B is given by (2,1).
All you need to do then is work out how far your new point is from B and add a multiple K*(2,1) to your point B where K is chosen to meet the requirements of your distance
I am assuming you are in 2D, but the same method would apply in higher dimensions
My math is rusty, but the linear equation is generally represented as y=m*x+b, where m is the slope, and b is the y-intercept. You can get m, the slope, by taking the difference of the y values and dividing that by the difference in the x values, e.g., if A = (2,2) and B = (4,3), then m is (3-2)/(4-2) or 0.5. Then, you can solve the linear equation for b, the y-intercept, i.e. b=y-m*x and then plug in either of the data points, e.g. if we plug in the x and y values for point A, you get b = 2 - 0.5 * 2 = 1. Now knowing the slope, m (0.5 in this example), and the y-intercept, b (1 in this example), you can calculate the y for any x value using y=m*x+b, in this case y=0.5*x+1.
So, if touchedPoint and fixedPoint are CGPoint, you can calculate the slope and y-intercept from fixedPoint and touchedPoint like so:
double m = (fixedPoint.y - touchedPoint.y) / (fixedPoint.x - touchedPoint.x);
double b = fixedPoint.y - m * fixedPoint.x;
Now, you don't say how you want to determine where this third point, C, is. But if you, for example, knew the x coordinate for this new point C, you can calculate the y coordinate that falls on the same line as follows:
CGPoint pointC;
pointC.x = 400; // or set this to whatever you want
pointC.y = m * pointC.x + b;

angle for particular co-ordinate in projectile path?

I have xy co-ordinate like (200,200). I know the angle calculation from the origin the ball throws. How can I find the initial velocity to reach that particular xy co-ordinate when ball is thrown in 2d Environment?
Iam using
x = v0cosq0t;
y = v0sinq0t - (1/2)gt2.
but time is needed. Without time can I do it? any help please?
I'm assuming that you want the ball to hit that specific point (200,200) at the apex of its path. Well, my physics is a bit rusty, but this is what I've thrown together:
v_y = square_root(2*g*y),
where g is a positive number reflecting the acceleration due to gravity, and y being how high you want to go (200 in this case).
v_x = (x*g) / v_y,
where x is how far in the x direction you want to go (200 in this case), g is as before, and Vy is the answer we got in the previous equation.
These equations remove the need for an angle. However, if you'd rather have the velocity + angle, that's simple:
v0 = square_root(v_x^2 + v_y^2)
and
angle = arctan(v_y / v_x).
Here is the derivation, if you're interested:
(1/2)at^2 + v_yt + 0 = y
(1/2)at^2 + v_yt - y = 0
by quadratic formula,
t = (-v_y +/- square_root(v_y^2 - 2ay)) / a
we also have another equation, because at the apex the vertical velocity is 0:
0 = v_y + at
substitute:
0 = v_y + (-v_y +/- square_root(v_y^2 - 2ay))
0 = square_root(v_y^2 - 2ay)
0 = v_y^2 - 2ay
v_y = square_root(-2ay), or
v_y = square_root(2gy)
For v_x:
v_x*t = x
from before, t = v_y / a, so
v_x = (x*g)/v_y
I hope that made enough sense.
Im sure you can assume the velocity change is instantaneous. Games physics always has some 'dodgy' parts in it because it is too computationally expensive or not important enough to get right down the low granularity information.
You can start the velocity ass instantaneous, and then using a timer class to measure then time between each frame (very rough way of doing it), or you can have a timer class set up in an update loop that will update the physics every x seconds.