abstract class db{
// return an handle to db
}
class type extends db{
// code that uses db
}
abstract class limits extends db{
// code that DOES NOT use db
}
class otherclass extends limits{
// code that use db and limits
}
As you can see, I need db in all classes except limits. But limits is parent for classes that use db.
I think this is not the correct design pattern, since I extend db in limits just to have db available for children. Or is it?
Thanks.
Depending on unstated requirements, you would be better off with composition instead of inheritance, in this case.
class db {
// returns db handle
}
class type {
private db; // type can now use db
}
class limits {
// does something
}
class otherclass {
private limits;
private db; // can use limits and db
}
You said " I need db in all classes except limits." which indicates you should compose (or contain) a db not inherit from it. See md4's answer.
You need to think about why you might have abstract classes - this is usually because you want to "program to an interface" to coin a phrase.
Perhaps db and limits are two different things - think single responsibility...
abstract class db {
// returns db handle
}
abstract class limits {
// does something
}
class otherclass : extends limits, db {
}
...edit start...
Clearly for some specific OO languages like Java and C# limits and db would need to be interfaces rather than classes. The OP didn't specify a language.
...edit end...
Think about the using code - consider writing a few unit tests to see what it looks like. Think about what must change together and what should be decoupled.
Related
I am looking for a way to dynamically select the correct dependency during runtime using google guice.
My usecase is a kotlin application which can work with either sqlite or h2 databases depending on the configuration file provided.
The file is read when the application is executed and if the database is not found, the correct one is created and migrated into.
My database structure contains the Database (Interface), H2Database: Database, SQLiteDatabase: Database and the module binding class which looks like this:
class DatabaseModule: KotlinModule() {
override fun configure() {
bind<Database>().annotatedWith<configuration.H2>().to<H2Database>()
bind<Database>().annotatedWith<configuration.SQLite>().to<SQLiteDatabase>()
}
}
So far, with SQlite alone, I would simply request the dependency using:
#Inject
#SQLite
private lateinit var database: Database
How would I make this selection during runtime?
Without knowing too much about the specific of your code, I'll offer three general approaches.
(Also, I have never used Kotlin. I hope Java samples are enough for you to figure things out.)
First Approach
It sounds like you need some non-trivial logic to determine which Database implementation is the right one to use. This is a classic case for a ProviderBinding. Instead binding Database to a specific implementation, you bind Database to a class that is responsible providing instances (a Provider). For example, you might have this class:
public class MyDatabaseProvider.class implements Provider<Database> {
#Inject
public MyDatabaseProvider.class(Provider<SQLiteDatabase> sqliteProvider, Provider<H2Database> h2Provider) {
this.sqliteProvider = sqliteProvider;
this.h2Provider = h2Provider;
}
public Database get() {
// Logic to determine database type goes here
if (isUsingSqlite) {
return sqliteProvider.get();
} else if (isUsingH2) {
return h2Provider.get();
} else {
throw new ProvisionException("Could not determine correct database implementation.");
}
}
}
(Side note: This sample code gets you a new instance every time. It is fairly straightforward to make this also return a singleton instance.)
Then, to use it, you have two options. In your module, you would bind Database not to a specific implementation, but to your DatabaseProvider. Like this:
protected void configure() {
bind(Database.class).toProvider(MyDatabaseProvider.class);
}
The advantage of this approach is that you don't need to know the correct database implementation until Guice tries to construct an object that requires Database as one of its constructor args.
Second Approach
You could create a DatabaseRoutingProxy class which implements Database and then delegates to the correct database implementation. (I've used this pattern professionally. I don't think there's an "official" name for this design pattern, but you can find a discussion here.) This approach is based on lazy loading with Provider using the Providers that Guice automatically creates(1) for every bound type.
public class DatabaseRoutingProxy implements Database {
private Provider<SqliteDatabse> sqliteDatabaseProvider;
private Provider<H2Database> h2DatabaseProvider;
#Inject
public DatabaseRoutingProxy(Provider<SqliteDatabse> sqliteDatabaseProvider, Provider<H2Database> h2DatabaseProvider) {
this.sqliteDatabaseProvider = sqliteDatabaseProvider;
this.h2DatabaseProvider = h2DatabaseProvider;
}
// Not an overriden method
private Database getDatabase() {
boolean isSqlite = // ... decision logic, or maintain a decision state somewhere
// If these providers don't return singletons, then you should probably write some code
// to call the provider once and save the result for future use.
if (isSqlite) {
return sqliteDatabaseProvider.get();
} else {
return h2DatabaseProvider.get();
}
}
#Override
public QueryResult queryDatabase(QueryInput queryInput) {
return getDatabase().queryDatabase(queryInput);
}
// Implement rest of methods here, delegating as above
}
And in your Guice module:
protected void configure() {
bind(Database.class).to(DatabaseRoutingProxy.class);
// Bind these just so that Guice knows about them. (This might not actually be necessary.)
bind(SqliteDatabase.class);
bind(H2Database.class);
}
The advantage of this approach is that you don't need to be able to know which database implementation to use until you actually make a database call.
Both of these approaches have been assuming that you cannot instantiate an instance of H2Database or SqliteDatabase unless the backing database file actually exists. If it's possible to instantiate the object without the backing database file, then your code becomes much simpler. (Just have a router/proxy/delegator/whatever that takes the actual Database instances as the constructor args.)
Third Approach
This approach is completely different then the last two. It seems to me like your code is actually dealing with two questions:
Does a database actually exist? (If not, then make one.)
Which database exists? (And get the correct class to interact with it.)
If you can solve question 1 before even creating the guice injector that needs to know the answer to question 2, then you don't need to do anything complicated. You can just have a database module like this:
public class MyDatabaseModule extends AbstractModule {
public enum DatabaseType {
SQLITE,
H2
}
private DatabaseType databaseType;
public MyDatabaseModule(DatabaseType databaseType) {
this.databaseType = databaseType;
}
protected void configure() {
if (SQLITE.equals(databaseType)) {
bind(Database.class).to(SqliteDatabase.class);
} else if (H2.equals(databaseType)) {
bind(Database.class).to(H2Database.class);
}
}
}
Since you've separated out questions 1 & 2, when you create the injector that will use the MyDatabaseModule, you can pass in the appropriate value for the constructor argument.
Notes
The Injector documentation states that there will exist a Provider<T> for every binding T. I have successfully created bindings without creating the corresponding provider, therefore Guice must be automatically creating a Provider for configured bindings. (Edit: I found more documentation that states this more clearly.)
"Optional interface" is probably not a standard term, so let me give an example. Suppose I have:
interface Car {
start();
honk();
}
Now I can have like HondaCar, PriusCar, etc., implementations. Yay! But what if honking is not all that important to me or my users, so I decide to do something like this:
interface Car {
start();
canHonk(); // return true if honking is supported
honk(); // undefined behavior of canHonk is false
}
So this is what I'm calling an "optional interface", because actually supporting honk is optional. It still seems like a fine, well-defined interface, but another way you could've expressed this is by separating this into two interfaces:
interface Car {
start();
}
interface Honkable {
honk();
}
Now, if user code really needs to do some honking, you must pass it a Honkable. If it's optional, it can take a null pointer. And if it doesn't care about honking at all, it can ignore Honkable completely. However, this does put more onus on the user code to manage all this.
So, I've listed some pros and cons that I see, but I'm curious what others think. Which is the preferable pattern in which situations?
Composition over Inheritance, our subject here, is an important OOP principle. It tells us to define our objects by their functions. Which means, your second approach is the best practice. Do it like:
public class SomeCar: ICar, IHonk {}
public Interface ICar {}
public Interface IHonk {}
Design for capability instead of identity.
Two separate interfaces is the way to go in my opinion
If you want to honk, implement the interface
As others have mentioned, separate interfaces are a better solution here. It is also worth noting that it conforms to the Interface Segregation Principle from SOLID.
However, another approach would be to use a feature container:
public class FeatureContainer {
// ...
public bool isAvailable<T>() {
// ...
}
public T getFeatureOrNull<T>() {
// ...
}
}
and then have for example:
public abstract class Car : FeatureContainer {
// ...
};
public class SomeCar : Car {
public SomeCar()
: base(/* instantiate all implementations of supported interfaces */)
{}
}
so then you could have:
Car aCar = getSomeCar();
if (aCar.isAvailable<Honkable>()) {
Honkable h = aCar.getFeatureOrNull<Honkable>();
h.honk();
}
This can have of course numerous syntactical variations depending on language and desired semantics.
I have a base class where all common functions are written. I many classes which override this functions by virtual keyword. Like,
public class Base
{
public virtual void sample()
{
..............
}
}
public class a : Base
{
public override sample()
{
}
}
public class implement
{
public void ToSample()
{
Base baseclass = new Base();
Switch(test)
{
case a: baseclass = a();
break;
case b: baseclass = b();
break;
}
baseclass.sample();
}
}
This perfect code for current situation but now I have more class to be assign in switch case. It is not good practice for adding huge amount of cases so I want something that automatically assign child class.
Is anybody know something to be implement ?
As stated in the comment, you can decouple the implementation by using dependency injection. Note however, that in some cases you have no choice but doing that kind of switch (e.g. when you need to create a class based on a text received in a socket). In such cases the important thing is to always keep the switch statement encapsulated in one method and make your objects rely on it (or, in other words, don't copy-and-paste it everywhere :)). The idea here is too keep your system isolated from a potentially harmful code. Of course that if you add a new class you will have to go and modify that method, however you will only have to do it in one time and in one specific place.
Another approach that I have seen (and sometimes used) is to build a mapping between values an classes. So, if your class-creation switch depends on an integer code, you basically create a mapping between codes and classes. What you are doing here is turning a "static" switch into a dynamic behavior, since you can change the mappings contents at any time and thus alter the way your program behaves. A typical implementation would be something like (sorry for the pseudocode, I'm not familiar with C#):
public class implement
{
public void ToSample()
{
class = this.mapping.valueForKey(test);
Base baseclass = new class();
baseclass.sample();
}
}
Note however that for this example to work you need reflection support, which varies according to the language you are using (again, sorry but I don't know the C# specifics).
Finally, you can also check the creational family of patterns for inspiration regarding object creation issues and some well known forms of solving them.
HTH
I'm reading some books about Design Patterns and while some describe the relation between the abstraction and the implementation as a composition, some describe it as an aggregation. Now I wonder: is this dependant on the implementation? On the language? Or context?
The terms "composition" and "aggregation" mean more or less the same thing and may be used interchangeably. Aggregation may be used more frequently when describing container classes such as lists, dynamic arrays, maps, and queues where the elements are all of the same type; however, both terms may be found to describe classes defined in terms of other classes, regardless of whether those types are homogenous (all of the same type) or heterogenous (objects of different types).
To make this clearer:
class Car {
// ...
private:
Engine engine;
Hood hood;
};
// The car is *composed* of an engine and a hood. Hence, composition. You are
// also bringing together (i.e. *aggregating*) an engine and hood into a car.
The relationship between abstraction and implementation typically implies inheritance, rather than composition/aggregation; typically the abstraction is an interface or virtual base class, and the implementation is a fully concrete class that implements the given interface. But, to make things confusing, composition/aggregation can be a part of the interface (because, for example, you may need to set/get the objects that are used as building blocks), and they are also an approach to implementation (because you might use delegation to provide the definition for methods in your implementation).
To make this clearer:
interface Car {
public Engine getEngine();
public Hood getHood();
public void drive();
}
// In the above, the fact that a car has these building blocks
// is a part of its interface (the abstraction).
class HondaCivic2010 implements Car {
public void drive(){ getEngine().drive(); }
// ...
}
// In the above, composition/delegation is an implementation
// strategy for providing the drive functionality.
Since you have tagged your question "bridge", I should point out that the definition of the bridge pattern is a pattern where you use composition rather than inheritance to allow for variation at multiple different levels. An example that I learned at college... using inheritance you might have something like:
class GoodCharacter;
class BadCharacter;
class Mage;
class Rogue;
class GoodMage : public GoodCharacter, Mage;
class BadMage : public BadCharacter, Mage;
class GoodRogue : public GoodCharacter, Rogue;
class BadRogue : public BadCharacter, Rogue;
As you can see, this kind of thing goes pretty crazy, and you get a ridiculous number of classes. The same thing, with the bridge pattern, would look like:
class Personality;
class GoodPersonality : public Personality;
class BadPersonality : public Personality;
class CharacterClass;
class Mage : public CharacterClass;
class Rogue : public CharacterClass;
class Character {
public:
// ...
private:
CharacterClass character_class;
Personality personality;
};
// A character has both a character class and a personality.
// This is a perfect example of the bridge pattern, and we've
// reduced MxN classes into a mere M+N classes, and we've
// arguably made the system even more flexible than before.
the bridge pattern must use delegation (aggregation/composition and not inheritance). from the gang-of-four book:
Use the Bridge pattern when
* you want to avoid a permanent binding between an abstraction and its implementation. This might be the case, for example, when the implementation must be selected or switched at run-time.
* both the abstractions and their implementations should be extensible by subclassing. In this case, the Bridge pattern lets you combine the different abstractions and implementations and extend them independently.
* changes in the implementation of an abstraction should have no impact on clients; that is, their code should not have to be recompiled.
* (C++) you want to hide the implementation of an abstraction completely from clients. In C++ the representation of a class is visible in the class interface.
* you have a proliferation of classes as shown earlier in the first Motivation diagram. Such a class hierarchy indicates the need for splitting an object into two parts. Rumbaugh uses the term "nested generalizations" [RBP+91] to refer to such class hierarchies.
* you want to share an implementation among multiple objects (perhaps using reference counting), and this fact should be hidden from the client. A simple example is Coplien's String class [Cop92], in which multiple objects can share the same string representation (StringRep).
Standard UML of Bridge pattern clears out all air around the confusion. Below is an explanation with a brief example to clear the air around this.
Apologies for this lengthy code, best way is to copy this code to Visual Studio to easily understand it.
Read through the explanation written at the end of code
interface ISpeak
{
void Speak();
}
class DogSpeak : ISpeak
{
public void Speak()
{
Console.WriteLine("Dog Barks");
}
}
class CatSpeak : ISpeak
{
public void Speak()
{
Console.WriteLine("Cat Meows");
}
}
abstract class AnimalBridge
{
protected ISpeak Speech;
protected AnimalBridge(ISpeak speech)
{
this.Speech = speech;
}
public abstract void Speak();
}
class Dog : AnimalBridge
{
public Dog(ISpeak dogSpeak)
: base(dogSpeak)
{
}
public override void Speak()
{
Speech.Speak();
}
}
class Cat : AnimalBridge
{
public Cat(ISpeak catSpeak)
: base(catSpeak)
{
}
public override void Speak()
{
Speech.Speak();
}
}
-- ISpeak is the abstraction that bot Dog and Cat has to implement
-- Decoupled Dog and Cat classes by introducing a bridge "Animal" that is composed of ISpeak
-- Dog and Cat classes extend Animal class and thus are decoupled from ISpeak.
Hope this clarifies
To show an example what is this question about:
I have currently a dilemma in PHP project I'm working on. I have in mind a method that will be used by multiple classes (UIs in this case - MVC model), but I'm not sure how to represent such methods in OO design. The first thing that came into my mind was to create a class with static functions that I'd call whenever I need them. However I'm not sure if it's the right thing to do.
To be more precise, I want to work, for example, with time. So I'll need several methods that handle time. I was thinking about creating a Time class where I'd be functions that check whether the time is in correct format etc.
Some might say that I shouldn't use class for this at all, since in PHP I can still use procedural code. But I'm more interested in answer that would enlighten me how to approach such situations in OOP / OOD.
So the actual questions are: How to represent such methods? Is static function approach good enough or should I reconsider anything else?
I would recommend creating a normal class the contains this behavior, and then let that class implement an interface extracted from the class' members.
Whenever you need to call those methods, you inject the interface (not the concrete class) into the consumer. This lets you vary the two independently of each other.
This may sound like more work, but is simply the Strategy design pattern applied.
This will also make it much easier to unit test the code, because the code is more loosely coupled.
Here's an example in C#.
Interface:
public interface ITimeMachine
{
IStopwatch CreateStopwatch();
DateTimeOffset GetNow();
}
Production implementation:
public class RealTimeMachine : ITimeMachine
{
#region ITimeMachine Members
public IStopwatch CreateStopwatch()
{
return new StopwatchAdapter();
}
public DateTimeOffset GetNow()
{
return DateTimeOffset.Now;
}
#endregion
}
and here's a consumer of the interface:
public abstract class PerformanceRecordingSession : IDisposable
{
private readonly IStopwatch watch;
protected PerformanceRecordingSession(ITimeMachine timeMachine)
{
if (timeMachine == null)
{
throw new ArgumentNullException("timeMachine");
}
this.watch = timeMachine.CreateStopwatch();
this.watch.Start();
}
public abstract void Record(long elapsedTicks);
public virtual void StopRecording()
{
this.watch.Stop();
this.Record(this.watch.ElapsedTicks);
}
}
Although you say you want a structure for arbitrary, unrelated functions, you have given an example of a Time class, which has many related functions. So from an OO point of view you would create a Time class and have a static function getCurrentTime(), for example, which returns an instance of this class. Or you could define that the constuctors default behaviour is to return the current time, whichever you like more. Or both.
class DateTime {
public static function getNow() {
return new self();
}
public function __construct() {
$this->setDateTime('now');
}
public function setDateTime($value) {
#...
}
}
But apart from that, there is already a builtin DateTime class in PHP.
Use a class as a namespace. So yes, have a static class.
class Time {
public static function getCurrentTime() {
return time() + 42;
}
}
I don't do PHP, but from an OO point of view, placing these sorts of utility methods as static methods is fine. If they are completely reusable in nature, consider placing them in a utils class.