I'm creating a RESTful web service (in Golang) which pulls a set of rows from the database and returns it to a client (smartphone app or web application). The service needs to be able to provide paging. The only problem is this data is sorted on a regularly changing "computed" column (for example, the number of "thumbs up" or "thumbs down" a piece of content on a website has), so rows can jump around page numbers in between a client's request.
I've looked at a few PostgreSQL features that I could potentially use to help me solve this problem, but nothing really seems to be a very good solution.
Materialized Views: to hold "stale" data which is only updated every once in a while. This doesn't really solve the problem, as the data would still jump around if the user happens to be paging through the data when the Materialized View is updated.
Cursors: created for each client session and held between requests. This seems like it would be a nightmare if there are a lot of concurrent sessions at once (which there will be).
Does anybody have any suggestions on how to handle this, either on the client side or database side? Is there anything I can really do, or is an issue such as this normally just remedied by the clients consuming the data?
Edit: I should mention that the smartphone app is allowing users to view more pieces of data through "infinite scrolling", so it keeps track of it's own list of data client-side.
This is a problem without a perfectly satisfactory solution because you're trying to combine essentially incompatible requirements:
Send only the required amount of data to the client on-demand, i.e. you can't download the whole dataset then paginate it client-side.
Minimise amount of per-client state that the server must keep track of, for scalability with large numbers of clients.
Maintain different state for each client
This is a "pick any two" kind of situation. You have to compromise; accept that you can't keep each client's pagination state exactly right, accept that you have to download a big data set to the client, or accept that you have to use a huge amount of server resources to maintain client state.
There are variations within those that mix the various compromises, but that's what it all boils down to.
For example, some people will send the client some extra data, enough to satisfy most client requirements. If the client exceeds that, then it gets broken pagination.
Some systems will cache client state for a short period (with short lived unlogged tables, tempfiles, or whatever), but expire it quickly, so if the client isn't constantly asking for fresh data its gets broken pagination.
Etc.
See also:
How to provide an API client with 1,000,000 database results?
Using "Cursors" for paging in PostgreSQL
Iterate over large external postgres db, manipulate rows, write output to rails postgres db
offset/limit performance optimization
If PostgreSQL count(*) is always slow how to paginate complex queries?
How to return sample row from database one by one
I'd probably implement a hybrid solution of some form, like:
Using a cursor, read and immediately send the first part of the data to the client.
Immediately fetch enough extra data from the cursor to satisfy 99% of clients' requirements. Store it to a fast, unsafe cache like memcached, Redis, BigMemory, EHCache, whatever under a key that'll let me retrieve it for later requests by the same client. Then close the cursor to free the DB resources.
Expire the cache on a least-recently-used basis, so if the client doesn't keep reading fast enough they have to go get a fresh set of data from the DB, and the pagination changes.
If the client wants more results than the vast majority of its peers, pagination will change at some point as you switch to reading direct from the DB rather than the cache or generate a new bigger cached dataset.
That way most clients won't notice pagination issues and you don't have to send vast amounts of data to most clients, but you won't melt your DB server. However, you need a big boofy cache to get away with this. Its practical depends on whether your clients can cope with pagination breaking - if it's simply not acceptable to break pagination, then you're stuck with doing it DB-side with cursors, temp tables, coping the whole result set at first request, etc. It also depends on the data set size and how much data each client usually requires.
I am not aware of a perfect solution for this problem. But if you want the user to have a stale view of the data then cursor is the way to go. Only tuning you can do is to store only the data for 1st 2 pages in the cursor. Beyond that you fetch it again.
Related
We have data stored in a data warehouse as follows:
Price
Date
Product Name (varchar(25))
We currently only have four products. That changes very infrequently (on average once every 10 years). Once every business day, four new data points are added representing the day's price for each product.
On the website, a user can request this information by entering a date range and selecting one or more products names. Analytics shows that the feature is not heavily used (about 10 users requests per week).
It was suggested that the data warehouse should daily push (SFTP) a CSV file containing all data (currently 6718 rows of this data and growing by four each day) to the web server. Then, the web server would read data from the file and display that data whenever a user made a request.
Usually, the push would only be once a day, but more than one push could be possible to communicate (infrequent) price corrections. Even in the price correction scenario, all data would be delivered in the file. What are problems with this approach?
Would it be better to have the web server make a request to the data warehouse per user request? Or does this have issues such as a greater chance for network errors or performance issues?
Would it be better to have the web server make a request to the data warehouse per user request?
Yes it would. You have very little data, so there is no need to try and 'cache' this in some way. (Apart from the fact that CSV might not be the best way to do this).
There is nothing stopping you from doing these requests from the webserver to the database server. With as little information as this you will not find performance an issue, but even if it would be when everything grows, there is a lot to be gained on the database-side (indexes etc) that will help you survive the next 100 years in this fashion.
The amount of requests from your users (also extremely small) does not need any special treatment, so again, direct query would be the best.
Or does this have issues such as a greater chance for network errors or performance issues?
Well, it might, but that would not justify your CSV method. Examples and why you need not worry, could be
the connection with the databaseserver is down.
This is an issue for both methods, but with only one connection per day the change of a 1-in-10000 failures might seem to be better for once-a-day methods. But these issues should not come up very often, and if they do, you should be able to handle them. (retry request, give a message to user). This is what enourmous amounts of websites do, so trust me if I say that this will not be an issue. Also, think of what it would mean if your daily update failed? That would present a bigger problem!
Performance issues
as said, this is due to the amount of data and requests, not a problem. And even if it becomes one, this is a problem you should be able to catch at a different level. Use a caching system (non CSV) on the database server. Use a caching system on the webserver. Fix your indexes to stop performance from being a problem.
BUT:
It is far from strange to want your data-warehouse separated from your web system. If this is a requirement, and it surely could be, the best thing you can do is re-create your warehouse-database (the one I just defended as being good enough to query directly) on another machine. You might get good results by doing a master-slave system
your datawarehouse is a master-database: it sends all changes to the slave but is inexcessible otherwise
your 2nd database (on your webserver even) gets all updates from the master, and is read-only. you can only query it for data
your webserver cannot connect to the datawarehouse, but can connect to your slave to read information. Even if there was an injection hack, it doesn't matter, as it is read-only.
Now you don't have a single moment where you update the queried database (the master-slave replication will keep it updated always), but no chance that the queries from the webserver put your warehouse in danger. profit!
I don't really see how SQL injection could be a real concern. I assume you have some calendar type field that the user fills in to get data out. If this is the only form just ensure that the only field that is in it is a date then something like DROP TABLE isn't possible. As for getting access to the database, that is another issue. However, a separate file with just the connection function should do fine in most cases so that a user can't, say open your webpage in an HTML viewer and see your database connection string.
As for the CSV, I would have to say querying a database per user, especially if it's only used ~10 times weekly would be much more efficient than the CSV. I just equate the CSV as overkill because again you only have ~10 users attempting to get some information, to export an updated CSV every day would be too much for such little pay off.
EDIT:
Also if an attack is a big concern, which that really depends on the nature of the business, the data being stored, and the visitors you receive, you could always create a backup as another option. I don't really see a reason for this as your question is currently stated, but it is a possibility that even with the best security an attack could happen. That mainly just depends on if the attackers want the information you have.
Imagine we have a web-site which sends write and read requests into some DB via Hibernate. I use Java, but it doesn't matter for this question.
Usually we want to read the fresh data from DB. But I want to introduce some delay between the written data becomes visible to reads just to increase the performance. I.e. I dont need to "publish" the rows inserted into DB immediately. Its OK for me to "publish" fresh data after some delay.
How can I achieve it?
As far as I understand this can be set up on several different tiers of my system.
I can cache some requests in front-end. Probably I should set up proxy server for this. But this will work only if all the parameters of the query match.
I can cache the read requests in Hibernate. OK, but can I specify or estimate the average time the read query will return stale data after some fresh insert occurred? In other words how can I control the delay time between fresh data becomes visible to the users?
Or may be I should use something like a memcached system instead of Hibernate cache?
Probably I can set something in DB. I dont know what should I do with DB. Probably I can ease the isolation level to burst the performance of my DB.
So, which way is the best one?
And the main question, of course: does the relaxation of requirements I introduce here may REALLY help to increase the performance of my system?
If I am reading your architecture correct you have client -> server -> database server
Answers to each point
This will put the burden on the client to implement the caching if you only use your own client I would go for this method. It will have the side effect of improving client performance possibly and put less load on the server and database server so they will scale better.
Now caching on the server will improve scalability of the database server and possibly performance in the client but will put a memory burden on the server. This would be my second option
Implement something in the database. At this point what are you gaining? the database server still has to do work to determine what rows to send back. And also you will get no scalability benefits.
So to sum up I would cache at the client first if you can if not cache at the server. Leave the DB out of the loop.
To answer your main question - caching is one of the most effective ways of increasing both performance and scalability of web applications which are constrained by database performance - your application may or may not fall into this category.
In general, I'd recommend setting up a load testing rig, and measure the various parts of your app to identify the bottleneck before starting to optimize.
The most effective cache is one outside your system - a CDN or the user's browser. Read up on browser caching, and see if there's anything you can cache locally. Browsers have caching built in as a standard feature - you control them via HTTP headers. These caches are very effective, because they stop requests even reaching your infrastructure; they are very efficient for static web assets like images, javascript files or stylesheets. I'd consider a proxy server to be in the same category. The major drawback is that it's hard to manage this cache - once you've said to the browser "cache this for 2 weeks", refreshing it is hard.
The next most effective caching layer is to cache (parts of) web pages on your application server. If you can do this, you avoid both the cost of rendering the page, and the cost of retrieving data from the database. Different web frameworks have different solutions for this.
Next, you can cache at the ORM level. Hibernate has a pretty robust implementation, and it provides a lot of granularity in your cache strategies. This article shows a sample implementation, including how to control the expiration time. You get a lot of control over caching here - you can specify the behaviour at the table level, so you can cache "lookup" data for days, and "transaction" data for seconds.
The database already implements a cache "under the hood" - it will load frequently used data into memory, for instance. In some applications, you can further improve the database performance by "de-normalizing" complex data - so the import routine might turn a complex data structure into a simple one. This does trade of data consistency and maintainability against performance.
I'm considering MongoDB right now. Just so the goal is clear here is what needs to happen:
In my app, Finch (finchformac.com for details) I have thousands and thousands of entries per day for each user of what window they had open, the time they opened it, the time they closed it, and a tag if they choose one for it. I need this data to be backed up online so it can sync to their other Mac computers, etc.. I also need to be able to draw charts online from their data which means some complex queries hitting hundreds of thousands of records.
Right now I have tried using Ruby/Rails/Mongoid in with a JSON parser on the app side sending up data in increments of 10,000 records at a time, the data is processed to other collections with a background mapreduce job. But, this all seems to block and is ultimately too slow. What recommendations does (if anyone) have for how to go about this?
You've got a complex problem, which means you need to break it down into smaller, more easily solvable issues.
Problems (as I see it):
You've got an application which is collecting data. You just need to
store that data somewhere locally until it gets sync'd to the
server.
You've received the data on the server and now you need to shove it
into the database fast enough so that it doesn't slow down.
You've got to report on that data and this sounds hard and complex.
You probably want to write this as some sort of API, for simplicity (and since you've got loads of spare processing cycles on the clients) you'll want these chunks of data processed on the client side into JSON ready to import into the database. Once you've got JSON you don't need Mongoid (you just throw the JSON into the database directly). Also you probably don't need rails since you're just creating a simple API so stick with just Rack or Sinatra (possibly using something like Grape).
Now you need to solve the whole "this all seems to block and is ultimately too slow" issue. We've already removed Mongoid (so no need to convert from JSON -> Ruby Objects -> JSON) and Rails. Before we get onto doing a MapReduce on this data you need to ensure it's getting loaded into the database quickly enough. Chances are you should architect the whole thing so that your MapReduce supports your reporting functionality. For sync'ing of data you shouldn't need to do anything but pass the JSON around. If your data isn't writing into your DB fast enough you should consider Sharding your dataset. This will probably be done using some user-based key but you know your data schema better than I do. You need choose you sharding key so that when multiple users are sync'ing at the same time they will probably be using different servers.
Once you've solved Problems 1 and 2 you need to work on your Reporting. This is probably supported by your MapReduce functions inside Mongo. My first comment on this part, is to make sure you're running at least Mongo 2.0. In that release 10gen sped up MapReduce (my tests indicate that it is substantially faster than 1.8). Other than this you can can achieve further increases by Sharding and directing reads to the the Secondary servers in your Replica set (you are using a Replica set?). If this still isn't working consider structuring your schema to support your reporting functionality. This lets you use more cycles on your clients to do work rather than loading your servers. But this optimisation should be left until after you've proven that conventional approaches won't work.
I hope that wall of text helps somewhat. Good luck!
We have an application that takes real time data and inserts it into database. it is online for 4.5 hours a day. We insert data second by second in 17 tables. The user at any time may query any table for the latest second data and some record in the history...
Handling the feed and insertion is done using a C# console application...
Handling user requests is done through a WCF service...
We figured out that insertion is our bottleneck; most of the time is taken there. We invested a lot of time trying to finetune the tables and indecies yet the results were not satisfactory
Assuming that we have suffecient memory, what is the best practice to insert data into memory instead of having database. Currently we are using datatables that are updated and inserted every second
A colleague of ours suggested another WCF service instead of database between the feed-handler and the WCF user-requests-handler. The WCF mid-layer is supposed to be TCP-based and it keeps the data in its own memory. One may say that the feed handler might deal with user-requests instead of having a middle layer between 2 processes, but we want to seperate things so if the feed-handler crashes we want to still be able to provide the user with the current records
We are limited in time, and we want to move everything to memory in short period. Is having a WCF in the middle of 2 processes a bad thing to do? I know that the requests add some overhead, but all of these 3 process(feed-handler, In memory database (WCF), user-request-handler(WCF) are going to be on the same machine and bandwidth will not be that much of an issue.
Please assist!
I would look into creating a cache of the data (such that you can also reduce database selects), and invalidate data in the cache once it has been written to the database. This way, you can batch up calls to do a larger insert instead of many smaller ones, but keep the data in-memory such that the readers can read it. Actually, if you know when the data goes stale, you can avoid reading the database entirely and use it just as a backing store - this way, database performance will only affect how large your cache gets.
Invalidating data in the cache will either be based on whether its written to the database or its gone stale, which ever comes last, not first.
The cache layer doesn't need to be complicated, however it should be multi-threaded to host the data and also save it in the background. This layer would sit just behind the WCF service, the connection medium, and the WCF service should be improved to contain the logic of the console app + the batching idea. Then the console app can just connect to WCF and throw results at it.
Update: the only other thing to say is invest in a profiler to see if you are introducing any performance issues in code that are being masked. Also, profile your database. You mention you need fast inserts and selects - unfortunately, they usually trade-off against each other...
What kind of database are you using? MySQL has a storage engine MEMORY which would seem to be suited to this sort of thing.
Are you using DataTable with DataAdapter? If so, I would recommend that you drop them completely. Insert your records directly using DBCommand. When users request reports, read data using DataReader, or populate DataTable objects using DataTable.Load (IDataReader).
Storying data in memory has the risk of losing data in case of crashes or power failures.
I had a discussion with a colleague at work, it was about SQL queries and sorting. He has the opinion that you should let the server do any sorting before returning the rows to the client. I on the other hand thinks that the server is probably busy enough as it is, and it must be better for performance to let the client handle the sorting after it has fetched the rows.
Anyone which strategy is best for the overall performance of a multi-user system?
In general, you should let the database do the sorting; if it doesn't have the resources to handle this effectively, you need to upgrade your database server.
First off, the database may already have indexes on the fields you want so it may be trivial for it to retrieve data in sorted order. Secondly, the client can't sort the results until it has all of them; if the server sorts the results, you can process them one row at a time, already sorted. Lastly, the database is probably more powerful than the client machine and can probably perform the sorting more efficiently.
It depends... Is there paging involved? What's the max size of the data set? Is the entire dataset need to be sorted the same one way all the time? or according to user selection? Or, (if paging is involved), is it only the records in the single page on client screen need to be sorted? (not normally acceptable) or does the entire dataset need to be sorted and page one of the newly sorted set redisplayed?
What's the distribution of client hardware compared to the processing requirements of this sort operation?
bottom line is; It's the overall user experience (measured against cost of course), that should control your decision... In general client machines are slower than servers, and may cause additional latency. ...
... But how often will clients request additional custom sort operations after initial page load? (client sort of data already on client is way faster than round trip...)
But sorting on client always requires that entire dataset be sent to client on initial load... That delays initials page display.. which may require lazy loading, or AJAX, or other technical complexities to mitigate...
Sorting on server otoh, introduces additional scalability issues and may require that you add more boxes to the server farm to deal with additional load... if you're doing sorting in DB, and reach that threshold, that can get complicated. (To scale out on DB, you have to implement some read-only replication scheme, or some other solution that allows multiple servers (each doing processing) to share read only data)..
I am in favor of Roberts answer, but I wanted to add a bit to it.
I also favor the sorting of data in SQL Server, I have worked on many systems that have tried to do it on the client side and in almost every case we have had to re-write the process to have it done inside SQL Server. Why is this you might ask? Well we have two primary reasons.
The amount of data being sorted
The need to implement proper paging due to #1
We deal with interfaces that show users very large sets of data, and leveraging the power of SQL Server to handle sorting and paging is by far better performing than doing it client side.
To put some numbers to this, a SQL Server Side sort to a client side sort in our environment, no paging for either. Client side 28 seconds using XML for sorting, and Server side sort total load time 3 seconds.
Generally I agree with the views expressed above that server-side sorting is usually the way to go. However, there are sometimes reasons to do client-side sorting:
The sort criteria are user-selectable or numerous. In this case, it may not be a good idea to go adding a shedload of indices to the table - especially if insert performance is a concern. If some sort criteria are rarely used, an index isn't necessarily worth it since inserts will outnumber selects.
The sort criteria can't be expressed in pure SQL [uncommon], or can't be indexed. It's not necessarily any quicker client-side, but it takes load of the server.
The important thing to remember is that while balancing the load between powerful clients and the server may be a good idea in theory, only the server can maintain an index which is updated on every insert. Whatever the client does, it's starting with a non-indexed unsorted set of data.
As usual, "It Depends" :)
If you have a stored procedure, for instance, that sends results to your presentation layer (whether a report, grid, etc.), it probably doesn't matter which method you go with.
What I typically run across, though, are views which have sorting (because they were used directly by a report, for instance) but are also used by other views or other procedures with their own sorting.
So as a general rule, I encourage others to do all sorting on the client-side and only on the server when there's reasonable justification for it.
If the sorting is just cosmetic and the client is getting the entire set of data I would tend to let the client handle it as it is about the presentation.
Also, say in a grid, you may have to implement the sorting in the client anyway as the user may change the ordering by clicking a column header (don't want to have to ask the server to retrieve all the information again)
Like any other performance related question, the universal answer is... "It Depends." However, I have developed a preference for sorting on the client. We write browser-based apps, and my definition of client is split between the web servers an the actual end-user client, the browser. I have two reasons for preferring sorting on the client to sorting in the DB.
First, there's the issue of the "right" place to do it from a design point of view. Most of the time the order of data isn't a business rule thing but rather a end-user convenience thing, so I view it as a function of the presentation, and I don't like to push presentation issues into the database. There are exceptions, for example, where the current price for an item is the most recent one on file. If you're getting price with something like:
SELECT TOP 1 price
FROM itemprice
WHERE ItemNumber = ?
AND effectivedate <= getdate()
ORDER BY effectivedate DESC
Then the order of the rows is very much a part of the business rule and obviously belongs in the database. However, if you're sorting on LastName when the user views customer by last name, and then again on FirstName when they click the FirstName column header, and again on State when they click that header then your sorting is a function of the presentation and belongs in the presentation layer.
The second reason I prefer sorting in the client layer is one of performance. Web servers scale horizontally, that is, if I overload my web server with users I can add another, and another, and another. I can have as many frontend servers as I need to handle the load and everything works just fine. But, if I overload the database I'm screwed. Databases scale vertically, you can throw more hardware at the problem, sure, but at some point that becomes cost prohibitive, so I like to let the DB do the selection, which it has to do, and let the client do the sorting, which it can to quite simply.
I prefer custom sorting on the client, however I also suggest that most SQL statements should have some reasonable ORDER BY clause by default. It causes very little impact on the database, but without it you could wind up with problems later. Often times without ever realizing it, a developer or user will begin to rely on some initial default sort order. If an ORDER BY clause wasn't specified, the data is only in that order by chance. At some later date an index could change or the data might be re-organized and the users will complain because the initial order of the data might have changed out from under them.
Situations vary, and measuring performance is important.
Sometimes it's obvious - if you have a big dataset and you're interested in a small range of the sorted list (e.g. paging in a UI app) - sorting on the server saves the data transfer.
But often you have one DB and several clients, and the DB may be overloaded while the clients are idle. Sorting on the client isn't heavy, and in this situation it could help you scale.