'unsigned short' array's length in Objective C - objective-c

In Objective C (iOS app), I have
unsigned short Alpha[a][b][c]; //this is a global array initialized
//somewhere else. Here, let a=5, b=6, c=7
Now in a function I want the length of the array for predefined a and b.
I tried the following:
[Alpha[1][2] length]; //unfortunately no such method exists
[Alpha[1][2] count]; //Warning: Invalid receiver type 'short unsigned int [7]'
So I am left with (I guess):
(sizeof (Alpha[1][2])) / (sizeof (Alpha[1][2][0]))
But as this is a global array, so the function will only get a reference to it.
So, this means it won't give me the desired result or am I wrong?
Any help on this or any other way of doing it would be much appreciated.

There is implementation of macro _countof
#if !defined(_countof)
#if !defined(__cplusplus)
#define _countof(_Array) (sizeof(_Array) / sizeof(0[_Array]))
#else
template <typename _CountofType, size_t _SizeOfArray>
char (*__countof_helper(_CountofType (&_Array)[_SizeOfArray]))[_SizeOfArray];
#define _countof(_Array) sizeof(*__countof_helper(_Array))
#endif
#endif
Size values will be:
a = _countof(Alpha);
b = _countof(0[Alpha]);
c = _countof(0[Alpha][0]);
If you use it in .mm then will be used more secure C++ version.

Related

How to use write_ply_with_properties() with Point_set_3

I have a CGAL::Point_set_3 point set with point normal and color. I would like to save all properties to a PLY file, using write_ply_with_properties() function.
My goal is to make the full version work (see code below), but even the simple version doesn't compile, with the same error as the full version.
I work on Linux with CGAL release 4.14 and gcc 7.4.0.
Here is the code:
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Point_set_3.h>
#include <CGAL/Point_set_3/IO.h>
#include <tuple> // for std::tie
#include <fstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Point_set_3<Point> Point_set;
int main(int argc, char*argv[])
{
Point_set points;
points.insert(Point(1., 2., 3.));
points.insert(Point(4., 5., 6.));
// add normal map
points.add_normal_map();
auto normal_map = points.normal_map();
// add color map
typedef Point_set::Property_map< Vector > ColorMap;
bool success = false;
ColorMap color_map;
std::tie(color_map, success) =
points.add_property_map< Vector >("color");
assert(success);
// populate normal and color map
for(auto it = points.begin(); it != points.end(); ++it)
{
normal_map[*it] = Vector(10., 11., 12.);
color_map[*it] = Vector(20., 21., 22.);
}
std::ofstream out("out.ply");
#if 1
// simple version
if(!out || !CGAL::write_ply_points_with_properties(
out,
points.points(), // const PointRange
CGAL::make_ply_point_writer(points.point_map())))
#else
// full version
if(!out || !CGAL::write_ply_points_with_properties(
out,
points.points(), // const PointRange
CGAL::make_ply_point_writer(points.point_map()),
CGAL::make_ply_normal_writer(points.normal_map()),
std::make_tuple(color_map,
CGAL::PLY_property< double >("red"),
CGAL::PLY_property< double >("green"),
CGAL::PLY_property< double >("blue"))))
#endif
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
The compilation error is:
...
/usr/include/boost/property_map/property_map.hpp:303:54: error: no match for ‘operator[]’ (operand types are ‘const CGAL::Point_set_3<CGAL::Point_3<CGAL::Epick> >::Property_map<CGAL::Point_3<CGAL::Epick> >’ and ‘const CGAL::Point_3<CGAL::Epick>’)
Reference v = static_cast<const PropertyMap&>(pa)[k];
CGAL-4.14/include/CGAL/Surface_mesh/Properties.h:567:15: note: candidate: CGAL::Properties::Property_map_base<I, T, CRTP_derived_class>::reference CGAL::Properties::Property_map_base<I, T, CRTP_derived_class>::operator[](const I&) [with I = CGAL::Point_set_3<CGAL::Point_3<CGAL::Epick> >::Index; T = CGAL::Point_3<CGAL::Epick>; CRTP_derived_class = CGAL::Point_set_3<CGAL::Point_3<CGAL::Epick> >::Property_map<CGAL::Point_3<CGAL::Epick> >; CGAL::Properties::Property_map_base<I, T, CRTP_derived_class>::reference = CGAL::Point_3<CGAL::Epick>&]
reference operator[](const I& i)
^~~~~~~~
CGAL-4.14/include/CGAL/Surface_mesh/Properties.h:567:15: note: no known conversion for argument 1 from ‘const CGAL::Point_3<CGAL::Epick>’ to ‘const CGAL::Point_set_3<CGAL::Point_3<CGAL::Epick> >::Index&’
How can I fix it?
The problem in your code is that you are using the method points() of CGAL::Point_set_3 which returns a range of points of type CGAL::Point_set_3::Point_range, whereas the property maps that you use (points.point_map(), etc.) are directly applied to a type CGAL::Point_set_3.
So you should simply call the write_ply_points_with_properties() on points, not on points.points().
Note also that if you store your colors on simple types (for example, using three Point_set_3 properties typed unsigned char), you can take advantage of the function CGAL::write_ply_point_set() that will automatically write all the simply-typed properties it finds, which makes it quite straightforward to use (just do CGAL::write_ply_point_set(out, points) and you're done).
One last thing that is really a detail not related to your problem, but you should avoid using the CGAL::Vector_3 for storing anything else than an actual geometric 3D vector (like colors in your case). That makes your code harder to read and is also quite an ineffective way to store colors if they are encoded as integer values between 0 and 255 (which is what unsigned char is for).

How to use int[] type in Objective-C [duplicate]

I wrote a function containing array as argument,
and call it by passing value of array as follows.
void arraytest(int a[])
{
// changed the array a
a[0] = a[0] + a[1];
a[1] = a[0] - a[1];
a[0] = a[0] - a[1];
}
void main()
{
int arr[] = {1, 2};
printf("%d \t %d", arr[0], arr[1]);
arraytest(arr);
printf("\n After calling fun arr contains: %d\t %d", arr[0], arr[1]);
}
What I found is though I am calling arraytest() function by passing values, the original copy of int arr[] is changed.
Can you please explain why?
When passing an array as a parameter, this
void arraytest(int a[])
means exactly the same as
void arraytest(int *a)
so you are modifying the values in main.
For historical reasons, arrays are not first class citizens and cannot be passed by value.
For passing 2D (or higher multidimensional) arrays instead, see my other answers here:
How to pass a multidimensional [C-style] array to a function in C and C++, and here:
How to pass a multidimensional array to a function in C++ only, via std::vector<std::vector<int>>&
Passing 1D arrays as function parameters in C (and C++)
1. Standard array usage in C with natural type decay (adjustment) from array to ptr
#Bo Persson correctly states in his great answer here:
When passing an array as a parameter, this
void arraytest(int a[])
means exactly the same as
void arraytest(int *a)
Let me add some comments to add clarity to those two code snippets:
// param is array of ints; the arg passed automatically "adjusts" (frequently said
// informally as "decays") from `int []` (array of ints) to `int *`
// (ptr to int)
void arraytest(int a[])
// ptr to int
void arraytest(int *a)
However, let me add also that the above two forms also:
mean exactly the same as
// array of 0 ints; automatically adjusts (decays) from `int [0]`
// (array of zero ints) to `int *` (ptr to int)
void arraytest(int a[0])
which means exactly the same as
// array of 1 int; automatically adjusts (decays) from `int [1]`
// (array of 1 int) to `int *` (ptr to int)
void arraytest(int a[1])
which means exactly the same as
// array of 2 ints; automatically adjusts (decays) from `int [2]`
// (array of 2 ints) to `int *` (ptr to int)
void arraytest(int a[2])
which means exactly the same as
// array of 1000 ints; automatically adjusts (decays) from `int [1000]`
// (array of 1000 ints) to `int *` (ptr to int)
void arraytest(int a[1000])
etc.
In every single one of the array examples above, and as shown in the example calls in the code just below, the input parameter type adjusts (decays) to an int *, and can be called with no warnings and no errors, even with build options -Wall -Wextra -Werror turned on (see my repo here for details on these 3 build options), like this:
int array1[2];
int * array2 = array1;
// works fine because `array1` automatically decays from an array type
// to a pointer type: `int *`
arraytest(array1);
// works fine because `array2` is already an `int *`
arraytest(array2);
As a matter of fact, the "size" value ([0], [1], [2], [1000], etc.) inside the array parameter here is apparently just for aesthetic/self-documentation purposes, and can be any positive integer (size_t type I think) you want!
In practice, however, you should use it to specify the minimum size of the array you expect the function to receive, so that when writing code it's easy for you to track and verify. The MISRA-C-2012 standard (buy/download the 236-pg 2012-version PDF of the standard for £15.00 here) goes so far as to state (emphasis added):
Rule 17.5 The function argument corresponding to a parameter declared to have an array type shall have an appropriate number of elements.
...
If a parameter is declared as an array with a specified size, the corresponding argument in each function call should point into an object that has at least as many elements as the array.
...
The use of an array declarator for a function parameter specifies the function interface more clearly than using a pointer. The minimum number of elements expected by the function is explicitly stated, whereas this is not possible with a pointer.
In other words, they recommend using the explicit size format, even though the C standard technically doesn't enforce it--it at least helps clarify to you as a developer, and to others using the code, what size array the function is expecting you to pass in.
2. Forcing type safety on arrays in C
(Not recommended (correction: sometimes recommended, especially for fixed-size multi-dimensional arrays), but possible. See my brief argument against doing this at the end. Also, for my multi-dimensional-array [ex: 2D array] version of this, see my answer here.)
As #Winger Sendon points out in a comment below my answer, we can force C to treat an array type to be different based on the array size!
First, you must recognize that in my example just above, using the int array1[2]; like this: arraytest(array1); causes array1 to automatically decay into an int *. HOWEVER, if you take the address of array1 instead and call arraytest(&array1), you get completely different behavior! Now, it does NOT decay into an int *! This is because if you take the address of an array then you already have a pointer type, and pointer types do NOT adjust to other pointer types. Only array types adjust to pointer types. So instead, the type of &array1 is int (*)[2], which means "pointer to an array of size 2 of int", or "pointer to an array of size 2 of type int", or said also as "pointer to an array of 2 ints". So, you can FORCE C to check for type safety on an array by passing explicit pointers to arrays, like this:
// `a` is of type `int (*)[2]`, which means "pointer to array of 2 ints";
// since it is already a ptr, it can NOT automatically decay further
// to any other type of ptr
void arraytest(int (*a)[2])
{
// my function here
}
This syntax is hard to read, but similar to that of a function pointer. The online tool, cdecl, tells us that int (*a)[2] means: "declare a as pointer to array 2 of int" (pointer to array of 2 ints). Do NOT confuse this with the version withOUT parenthesis: int * a[2], which means: "declare a as array 2 of pointer to int" (AKA: array of 2 pointers to int, AKA: array of 2 int*s).
Now, this function REQUIRES you to call it with the address operator (&) like this, using as an input parameter a POINTER TO AN ARRAY OF THE CORRECT SIZE!:
int array1[2];
// ok, since the type of `array1` is `int (*)[2]` (ptr to array of
// 2 ints)
arraytest(&array1); // you must use the & operator here to prevent
// `array1` from otherwise automatically decaying
// into `int *`, which is the WRONG input type here!
This, however, will produce a warning:
int array1[2];
// WARNING! Wrong type since the type of `array1` decays to `int *`:
// main.c:32:15: warning: passing argument 1 of ‘arraytest’ from
// incompatible pointer type [-Wincompatible-pointer-types]
// main.c:22:6: note: expected ‘int (*)[2]’ but argument is of type ‘int *’
arraytest(array1); // (missing & operator)
You may test this code here.
To force the C compiler to turn this warning into an error, so that you MUST always call arraytest(&array1); using only an input array of the corrrect size and type (int array1[2]; in this case), add -Werror to your build options. If running the test code above on onlinegdb.com, do this by clicking the gear icon in the top-right and click on "Extra Compiler Flags" to type this option in. Now, this warning:
main.c:34:15: warning: passing argument 1 of ‘arraytest’ from incompatible pointer type [-Wincompatible-pointer-types]
main.c:24:6: note: expected ‘int (*)[2]’ but argument is of type ‘int *’
will turn into this build error:
main.c: In function ‘main’:
main.c:34:15: error: passing argument 1 of ‘arraytest’ from incompatible pointer type [-Werror=incompatible-pointer-types]
arraytest(array1); // warning!
^~~~~~
main.c:24:6: note: expected ‘int (*)[2]’ but argument is of type ‘int *’
void arraytest(int (*a)[2])
^~~~~~~~~
cc1: all warnings being treated as errors
Note that you can also create "type safe" pointers to arrays of a given size, like this:
int array[2]; // variable `array` is of type `int [2]`, or "array of 2 ints"
// `array_p` is a "type safe" ptr to array of size 2 of int; ie: its type
// is `int (*)[2]`, which can also be stated: "ptr to array of 2 ints"
int (*array_p)[2] = &array;
...but I do NOT necessarily recommend this (using these "type safe" arrays in C), as it reminds me a lot of the C++ antics used to force type safety everywhere, at the exceptionally high cost of language syntax complexity, verbosity, and difficulty architecting code, and which I dislike and have ranted about many times before (ex: see "My Thoughts on C++" here).
For additional tests and experimentation, see also the link just below.
References
See links above. Also:
My code experimentation online: https://onlinegdb.com/B1RsrBDFD
See also:
My answer on multi-dimensional arrays (ex: 2D arrays) which expounds upon the above, and uses the "type safety" approach for multi-dimensional arrays where it makes sense: How to pass a multidimensional array to a function in C and C++
If you want to pass a single-dimension array as an argument in a function, you would have to declare a formal parameter in one of following three ways and all three declaration methods produce similar results because each tells the compiler that an integer pointer is going to be received.
int func(int arr[], ...){
.
.
.
}
int func(int arr[SIZE], ...){
.
.
.
}
int func(int* arr, ...){
.
.
.
}
So, you are modifying the original values.
Thanks !!!
Passing a multidimensional array as argument to a function.
Passing an one dim array as argument is more or less trivial.
Let's take a look on more interesting case of passing a 2 dim array.
In C you can't use a pointer to pointer construct (int **) instead of 2 dim array.
Let's make an example:
void assignZeros(int(*arr)[5], const int rows) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < 5; j++) {
*(*(arr + i) + j) = 0;
// or equivalent assignment
arr[i][j] = 0;
}
}
Here I have specified a function that takes as first argument a pointer to an array of 5 integers.
I can pass as argument any 2 dim array that has 5 columns:
int arr1[1][5]
int arr1[2][5]
...
int arr1[20][5]
...
You may come to an idea to define a more general function that can accept any 2 dim array and change the function signature as follows:
void assignZeros(int ** arr, const int rows, const int cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
*(*(arr + i) + j) = 0;
}
}
}
This code would compile but you will get a runtime error when trying to assign the values in the same way as in the first function.
So in C a multidimensional arrays are not the same as pointers to pointers ... to pointers. An int(*arr)[5] is a pointer to array of 5 elements,
an int(*arr)[6] is a pointer to array of 6 elements, and they are a pointers to different types!
Well, how to define functions arguments for higher dimensions? Simple, we just follow the pattern!
Here is the same function adjusted to take an array of 3 dimensions:
void assignZeros2(int(*arr)[4][5], const int dim1, const int dim2, const int dim3) {
for (int i = 0; i < dim1; i++) {
for (int j = 0; j < dim2; j++) {
for (int k = 0; k < dim3; k++) {
*(*(*(arr + i) + j) + k) = 0;
// or equivalent assignment
arr[i][j][k] = 0;
}
}
}
}
How you would expect, it can take as argument any 3 dim arrays that have in the second dimensions 4 elements and in the third dimension 5 elements. Anything like this would be OK:
arr[1][4][5]
arr[2][4][5]
...
arr[10][4][5]
...
But we have to specify all dimensions sizes up to the first one.
You are not passing the array as copy. It is only a pointer pointing to the address where the first element of the array is in memory.
You are passing the address of the first element of the array
You are passing the value of the memory location of the first member of the array.
Therefore when you start modifying the array inside the function, you are modifying the original array.
Remember that a[1] is *(a+1).
Arrays in C are converted, in most of the cases, to a pointer to the first element of the array itself. And more in detail arrays passed into functions are always converted into pointers.
Here a quote from K&R2nd:
When an array name is passed to a function, what is passed is the
location of the initial element. Within the called function, this
argument is a local variable, and so an array name parameter is a
pointer, that is, a variable containing an address.
Writing:
void arraytest(int a[])
has the same meaning as writing:
void arraytest(int *a)
So despite you are not writing it explicitly it is as you are passing a pointer and so you are modifying the values in the main.
For more I really suggest reading this.
Moreover, you can find other answers on SO here
In C, except for a few special cases, an array reference always "decays" to a pointer to the first element of the array. Therefore, it isn't possible to pass an array "by value". An array in a function call will be passed to the function as a pointer, which is analogous to passing the array by reference.
EDIT: There are three such special cases where an array does not decay to a pointer to it's first element:
sizeof a is not the same as sizeof (&a[0]).
&a is not the same as &(&a[0]) (and not quite the same as &a[0]).
char b[] = "foo" is not the same as char b[] = &("foo").
Arrays are always passed by reference if you use a[] or *a:
int* printSquares(int a[], int size, int e[]) {
for(int i = 0; i < size; i++) {
e[i] = i * i;
}
return e;
}
int* printSquares(int *a, int size, int e[]) {
for(int i = 0; i < size; i++) {
e[i] = i * i;
}
return e;
}
An array can also be called as a decay pointer.
Usually when we put a variable name in the printf statement the value gets printed in case of an array it decays to the address of the first element, Therefore calling it as a decay pointer.
And we can only pass the decay pointer to a function.
Array as a formal parameter like Mr.Bo said int arr[] or int arr[10] is equivalent to the int *arr;
They will have there own 4 bytes of memory space and storing the decay pointer received.and we do pointer arithmetic on them.

How can I transfer data from unsigned char * to char * safely?

I am willing to transfer data from unsigned char hash[512 + 1] to char res[512 + 1] safely.
My C hashing library MHASH returns a result so it can be printed as listed below.
for (int i = 0; i < size /*hash block size*/; i++)
printf("%.2x", hash[i]); // which is unsigned char - it prints normal hash characters in range [a-z,0-9]
printf("\n");
I am willing to do something like that (see below).
const char* res = (const char *)hash; // "hash" to "res"
printf("%s\n", res); // print "res" (which is const char*) - if i do this, unknown characters are printed
I know the difference between char and unsigned char, but I don't know how to transfer data. Any answer would be greatly appreciated, thanks in advance. But please do not recommend me C++ (STD) code, I am working on a project that is not STD-linked.
Given that the contents of the unsigned char array are printable characters, you can always safely convert it to char. Either a hardcopy with memcpy or a pointer reference as in the code you have already written.
I'm guessing that the actual problem here is that the unsigned char array contents are not actually printable characters, but integers in some format. You'll have to convert them from integer to ASCII letters. How to do this depends on the format of the data, which isn't clear in your question.
Assuming the following:
#define ARR_SIZE (512 + 1)
unsigned char hash[ARR_SIZE];
char res[ARR_SIZE];
/* filling up hash here. */
Just do:
#include <string.h>
...
memcpy(res, hash, ARR_SIZE);
Well, thank you guys for your answers, but unfortunately nothing worked yet. I am now sticking with the code below.
char res[(sizeof(hash) * 2) + 1] = { '\0' };
char * pPtr = res;
for (int i = 0; i < hashBlockSize; i++)
sprintf(pPtr + (i * 2), "%.2x", hash[i]);
return (const char *)pPtr;
Until there is any other much more performant way to get this done. It's right, my question is strongly related to MHASH Library.

Using C style unsigned char array and bitwise operators in Swift

I'm working on changing some Objective-C Code over to Swift, and I cannot figure out for the life of me how to take care of unsigned char arrays and bitwise operations in this specific instance of code.
Specifically, I'm working on converting the following Objective-C code (which deals with CoreBluetooth) to Swift:
unsigned char advertisementBytes[21] = {0};
[self.proximityUUID getUUIDBytes:(unsigned char *)&advertisementBytes];
advertisementBytes[16] = (unsigned char)(self.major >> 8);
advertisementBytes[17] = (unsigned char)(self.major & 255);
I've tried the following in Swift:
var advertisementBytes: CMutablePointer<CUnsignedChar>
self.proximityUUID.getUUIDBytes(advertisementBytes)
advertisementBytes[16] = (CUnsignedChar)(self.major >> 8)
The problems I'm running into are that getUUIDBytes in Swift seems to only take a CMutablePointer<CUnsignedChar> object as an argument, rather than an array of CUnsignedChars, so I have no idea how to do the later bitwise operations on advertisementBytes, as it seems it would need to be an unsignedChar array to do so.
Additionally, CMutablePointer<CUnsignedChar[21]> throws an error saying that fixed length arrays are not supported in CMutablePointers in Swift.
Could anyone please advise on potential work-arounds or solutions? Many thanks.
Have a look at Interacting with C APIs
Mostly this
C Mutable Pointers
When a function is declared as taking a CMutablePointer
argument, it can accept any of the following:
nil, which is passed as a null pointer
A CMutablePointer value
An in-out expression whose operand is a stored lvalue of type Type,
which is passed as the address of the lvalue
An in-out Type[] value,
which is passed as a pointer to the start of the array, and
lifetime-extended for the duration of the call
If you have declared a
function like this one:
SWIFT
func takesAMutablePointer(x: CMutablePointer<Float>) { /*...*/ } You
can call it in any of the following ways:
SWIFT
var x: Float = 0.0
var p: CMutablePointer<Float> = nil
var a: Float[] = [1.0, 2.0, 3.0]
takesAMutablePointer(nil)
takesAMutablePointer(p)
takesAMutablePointer(&x)
takesAMutablePointer(&a)
So you code becomes
var advertisementBytes = CUnsignedChar[]()
self.proximityUUID.getUUIDBytes(&advertisementBytes)
advertisementBytes[16] = CUnsignedChar(self.major >> 8)

How to interpret objective-c type specifier (e.g. returned by method_copyReturnType())?

Given I have a type specifier as returned by method_copyReturnType(). In the GNU runtime delivered with the GCC there are various methods to work with such a type specifier like objc_sizeof_type(), objc_alignof_type() and others.
When using the Apple runtime there are no such methods.
How can I interpret a type specifier string (e.g. get the size of a type) using the Apple runtime without implementing an if/else or case switch for myself?
[update]
I am not able to use the Apple Foundation.
I believe that you're looking for NSGetSizeAndAlignment:
Obtains the actual size and the aligned size of an encoded type.
const char * NSGetSizeAndAlignment (
const char *typePtr,
NSUInteger *sizep,
NSUInteger *alignp
);
Discussion
Obtains the actual size and the aligned size of the first data type represented by typePtr and returns a pointer to the position of the next data type in typePtr.
This is a Foundation function, not part of the base runtime, which is probably why you didn't find it.
UPDATE: Although you didn't initially mention that you're using Cocotron, it is also available there. You can find it in Cocotron's Foundation, in NSObjCRuntime.m.
Obviously, this is much better than rolling your own, since you can trust it to always correctly handle strings generated by its own runtime in the unlikely event that the encoding characters should change.
For some reason, however, it's unable to handle the digit elements of a method signature string (which presumably have something to do with offsets in memory). This improved version, by Mike Ash will do so:
static const char *SizeAndAlignment(const char *str, NSUInteger *sizep, NSUInteger *alignp, int *len)
{
const char *out = NSGetSizeAndAlignment(str, sizep, alignp);
if(len)
*len = out - str;
while(isdigit(*out))
out++;
return out;
}
afaik, you'll need to bake that info into your binary. just create a function which returns the sizeof and alignof in a struct, supports the types you must support, then call that function (or class method) for the info.
The program below shows you that many of the primitives are just one character. So the bulk of the function's implementation could be a switch.
static void test(SEL sel) {
Method method = class_getInstanceMethod([NSString class], sel);
const char* const type = method_copyReturnType(method);
printf("%s : %s\n", NSStringFromSelector(sel).UTF8String, type);
free((void*)type);
}
int main(int argc, char *argv[]) {
#autoreleasepool {
test(#selector(init));
test(#selector(superclass));
test(#selector(isEqual:));
test(#selector(length));
return 0;
}
}
and you could then use this as a starting point:
typedef struct t_pair_alignof_sizeof {
size_t align;
size_t size;
} t_pair_alignof_sizeof;
static t_pair_alignof_sizeof MakeAlignOfSizeOf(size_t align, size_t size) {
t_pair_alignof_sizeof ret = {align, size};
return ret;
}
static t_pair_alignof_sizeof test2(SEL sel) {
Method method = class_getInstanceMethod([NSString class], sel);
const char* const type = method_copyReturnType(method);
const size_t length = strlen(type);
if (1U == length) {
switch (type[0]) {
case '#' :
return MakeAlignOfSizeOf(__alignof__(id), sizeof(id));
case '#' :
return MakeAlignOfSizeOf(__alignof__(Class), sizeof(Class));
case 'c' :
return MakeAlignOfSizeOf(__alignof__(signed char), sizeof(signed char));
...