How to retrieve address of variable in vb.net? - vb.net

How can we fetch variable address where it is stored in memory ?
`
Sub Main()
Dim a As Integer
a = 10
System.Console.WriteLine("Value of a is : {0}", a)
System.Console.WriteLine("Address of a is : {0}", AddressOf(a))
System.Console.ReadKey()
End Sub
`
Here AddressOf is require function name but i want to get address of integer variable.

we dont. so we cant
in dotnet and java world, the concept of address of a variable is not the same as in C. the way address-of-a-variable is taught is old. the java/dot-net languages are way too advanced. of course the variable exists in memory but the address may not be what you think. so while working in these languages we do not usually consider the address aspect. that is considered only in context of C/C++.
now for why we do not consider the address:
while programming in these languages we do not need it. we need it when working with C, but not when working with java/dot-net. these languages do not need pointers (as in C). linked-lists, arrays, dynamically MALLOCed memory etc, all can be achieved without any need to know the memory address.
the address is not constant. it can change. it can change without any obvious reason from programmer's perspective. it can change at any time. it can change to some unpredictable location. these languages are designed to fully utilize the available RAM and so they move around the data. hence we cannot definitely say exactly where in memory it exists.
these languages are designed to work in virtual-memory machines. what this means is if you do somehow manage to get the address of a variable, that number may be far from real. the operating system might assign same address number to two variables in two programs running in two instances of visual studio all at the same time. again that address will not be of much use.
the real address of the variable does not contain just the data of the variable. if you do manage to get the real address of a variable and you go there, you will find a lot of data, not just your data but a lot of other data too! this other data consists of book keeping data. unlike C where a 7-character string occupies exactly 7 (or 8) bytes of memory, in java/dot net it might occupy about 30 bytes (or more)!!!.
so these are some of the reasons why we do not usually go after the memory address of a variable when working in java/dot-net.

Related

Determining a program's execution time by its length in bits?

This is a question popped into my mind while reading the halting problem, collatz conjecture and Kolmogorov complexity. I have tried to search for something similar but I was unable to find a particular topic maybe because it is not of great value or it could just be a trivial question.
For the sake of simplicity I will give three examples of programs/functions.
function one(s):
return s
function two(s):
while (True):
print s
function three(s):
for i from 0 to 10^10:
print(s)
So my questions is, if there is a way to formalize the length of a program (like the bits used to describe it) and also the internal memory used by the program, to determine the minimum/maximum number of time/steps needed to decide whether the program will terminate or run forever.
For example, in the first function the program doesn't alter its internal memory and halts after some time steps.
In the second example, the program runs forever but the program also doesn't alter its internal memory. For example, if we considered all the programs with the same length as with the program two that do not alter their state, couldn't we determine an upper bound of steps, which if surpassed we could conclude that this program will never terminate ? (If not why ?)
On the last example, the program alters its state (variable i). So, at each step the upper bound may change.
[In short]
Kolmogorov complexity suggests a way of finding the (descriptive) complexity of an object such as a piece of text. I would like to know, given a formal way of describing the memory-space used by a program (computed in runtime), if we could compute a maximum number of steps, which if surpassed would allow us to know whether this program will terminate or run forever.
Finally, I would like to suggest me any source that I might find useful and help me figure out what I am exactly looking for.
Thank you. (sorry for my English, not my native language. I hope I was clear)
If a deterministic Turing machine enters precisely the same configuration twice (which we can detect b keeping a trace of configurations seen so far), then we immediately know the TM will loop forever.
If it known in advance that a deterministic Turing machine cannot possibly use more than some fixed constant amount of its input tape, then the TM must explicitly halt or eventually enter some configuration it has already visited. Suppose the TM can use at most k tape cells, the tape alphabet is T and the set of states is Q. Then there are (|T|+1)^k * |Q| unique configurations (the number of strings over (T union blank) of length k times the number of states) and by the pigeonhole principle we know that a TM that takes that many steps must enter some configuration it has already been to before.
one: because we are given that this function does not use internal memory, we know that it either halts or loops forever.
two: because we are given that this function does not use internal memory, we know that it either halts or loops forever.
three: because we are given that this function only uses a fixed amount of internal memory (like 34 bits) we can tell in fewer than 2^34 iterations of the loop whether the TM will halt or not for any given input s, guaranteed.
Now, knowing how much tape a TM is going to use, or how much memory a program is going to use, is not a problem a TM can solve. But if you have an oracle (like a person who was able to do a proof) that tells you a correct fixed upper bound on memory, then the halting problem is solvable.

What is the main difference between byte addressable and bit addressable?

I'm learning 8051, and find it's hard to understand byte addressable and bit addressable.
A type of hardware architecture that supports unique access to individual bytes of data.
For example, let us assume a number 0x1234 (0001001000110100). When storing the numbers on a system which is byte addressable, the first byte of the data (00010010) gets a unique address to the second byte (00110100), i.e each byte aligned in the memory will be uniquely addressable. You could manipulate the content only in chunks of 8bits.
However in case of micro-controller registers were data is stored, if you could manipulate its content bit by bit it’s called bit addressable.
They are not really using the terms right, byte addressable is what we are used to an address represents a unique byte in memory or the memory space. Bit addressable would mean that each bit in the memory space has a unique address, which is not the case. they are just showing you how to make some macros/variables that can access individual bits, is not an 8051 thing, but a generic programming thing and specifically implemented in C using variable types or keywords (or just macros) for their compiler.
What they are telling you is they have this sbit declaration which unless it is just a macro is clearly not a C standard declaration. But you can do the same things without. it is just bit manipulation that they are doing for you. Normally to set bit 5 you would do something like
variable |= (1<<5);
to clear bit 5
variable&=~(1<<5);
and you can certainly make macros from that to make it more generic. What they have done for this compiler is allow you to declare a variable that is a single bit in some other variable and then that bit sized variable you can set to a one or zero.

Additional PlanningEntity in CloudBalancing - bounded-space situation

I successfully amended the nice CloudBalancing example to include the fact that I may only have a limited number of computers open at any given time (thanx optaplanner team - easy to do). I believe this is referred to as a bounded-space problem. It works dandy.
The processes come in groupwise, say 20 processes in a given order per group. I would like to amend the example to have optaplanner also change the order of these groups (not the processes within one group). I have therefore added a class ProcessGroup in the domain with a member List<Process>, the instances of ProcessGroup being stored in a List<ProcessGroup>. The desired optimisation would shuffle the members of this List, causing the instances of ProcessGroup to be placed at different indices of the List List<ProcessGroup>. The index of ProcessGroup should be ProcessGroup.index.
The documentation states that "if in doubt, the planning entity is the many side of the many-to-one relationsship." This would mean that ProcessGroup is the planning entity, the member index being a planning variable, getting assigned to (hopefully) different integers. After every new assignment of indices, I would have to resort the list List<ProcessGroup in ascending order of ProcessGroup.index. This seems very odd and cumbersome. Any better ideas?
Thank you in advance!
Philip.
The current design has a few disadvantages:
It requires 2 (genuine) entity classes (each with 1 planning variable): probably increases search space (= longer to solve, more difficult to find a good or even feasible solution) + it increases configuration complexity. Don't use multiple genuine entity classes if you can avoid it reasonably.
That Integer variable of GroupProcess need to be all different and somehow sequential. That smelled like a chained planning variable (see docs about chained variables and Vehicle Routing example), in which case the entire problem could be represented as a simple VRP with just 1 variable, but does that really apply here?
Train of thought: there's something off in this model:
ProcessGroup has in Integer variable: What does that Integer represent? Shouldn't that Integer variable be on Process instead? Are you ordering Processes or ProcessGroups? If it should be on Process instead, then both Process's variables can be replaced by a chained variable (like VRP) which will be far more efficient.
ProcessGroup has a list of Processes, but that a problem property: which means it doesn't change during planning. I suspect that's correct for your use case, but do assert it.
If none of the reasoning above applies (which would surprise me) than the original model might be valid nonetheless :)

Why does the Java API use int instead of short or byte?

Why does the Java API use int, when short or even byte would be sufficient?
Example: The DAY_OF_WEEK field in class Calendar uses int.
If the difference is too minimal, then why do those datatypes (short, int) exist at all?
Some of the reasons have already been pointed out. For example, the fact that "...(Almost) All operations on byte, short will promote these primitives to int". However, the obvious next question would be: WHY are these types promoted to int?
So to go one level deeper: The answer may simply be related to the Java Virtual Machine Instruction Set. As summarized in the Table in the Java Virtual Machine Specification, all integral arithmetic operations, like adding, dividing and others, are only available for the type int and the type long, and not for the smaller types.
(An aside: The smaller types (byte and short) are basically only intended for arrays. An array like new byte[1000] will take 1000 bytes, and an array like new int[1000] will take 4000 bytes)
Now, of course, one could say that "...the obvious next question would be: WHY are these instructions only offered for int (and long)?".
One reason is mentioned in the JVM Spec mentioned above:
If each typed instruction supported all of the Java Virtual Machine's run-time data types, there would be more instructions than could be represented in a byte
Additionally, the Java Virtual Machine can be considered as an abstraction of a real processor. And introducing dedicated Arithmetic Logic Unit for smaller types would not be worth the effort: It would need additional transistors, but it still could only execute one addition in one clock cycle. The dominant architecture when the JVM was designed was 32bits, just right for a 32bit int. (The operations that involve a 64bit long value are implemented as a special case).
(Note: The last paragraph is a bit oversimplified, considering possible vectorization etc., but should give the basic idea without diving too deep into processor design topics)
EDIT: A short addendum, focussing on the example from the question, but in an more general sense: One could also ask whether it would not be beneficial to store fields using the smaller types. For example, one might think that memory could be saved by storing Calendar.DAY_OF_WEEK as a byte. But here, the Java Class File Format comes into play: All the Fields in a Class File occupy at least one "slot", which has the size of one int (32 bits). (The "wide" fields, double and long, occupy two slots). So explicitly declaring a field as short or byte would not save any memory either.
(Almost) All operations on byte, short will promote them to int, for example, you cannot write:
short x = 1;
short y = 2;
short z = x + y; //error
Arithmetics are easier and straightforward when using int, no need to cast.
In terms of space, it makes a very little difference. byte and short would complicate things, I don't think this micro optimization worth it since we are talking about a fixed amount of variables.
byte is relevant and useful when you program for embedded devices or dealing with files/networks. Also these primitives are limited, what if the calculations might exceed their limits in the future? Try to think about an extension for Calendar class that might evolve bigger numbers.
Also note that in a 64-bit processors, locals will be saved in registers and won't use any resources, so using int, short and other primitives won't make any difference at all. Moreover, many Java implementations align variables* (and objects).
* byte and short occupy the same space as int if they are local variables, class variables or even instance variables. Why? Because in (most) computer systems, variables addresses are aligned, so for example if you use a single byte, you'll actually end up with two bytes - one for the variable itself and another for the padding.
On the other hand, in arrays, byte take 1 byte, short take 2 bytes and int take four bytes, because in arrays only the start and maybe the end of it has to be aligned. This will make a difference in case you want to use, for example, System.arraycopy(), then you'll really note a performance difference.
Because arithmetic operations are easier when using integers compared to shorts. Assume that the constants were indeed modeled by short values. Then you would have to use the API in this manner:
short month = Calendar.JUNE;
month = month + (short) 1; // is july
Notice the explicit casting. Short values are implicitly promoted to int values when they are used in arithmetic operations. (On the operand stack, shorts are even expressed as ints.) This would be quite cumbersome to use which is why int values are often preferred for constants.
Compared to that, the gain in storage efficiency is minimal because there only exists a fixed number of such constants. We are talking about 40 constants. Changing their storage from int to short would safe you 40 * 16 bit = 80 byte. See this answer for further reference.
The design complexity of a virtual machine is a function of how many kinds of operations it can perform. It's easier to having four implementations of an instruction like "multiply"--one each for 32-bit integer, 64-bit integer, 32-bit floating-point, and 64-bit floating-point--than to have, in addition to the above, versions for the smaller numerical types as well. A more interesting design question is why there should be four types, rather than fewer (performing all integer computations with 64-bit integers and/or doing all floating-point computations with 64-bit floating-point values). The reason for using 32-bit integers is that Java was expected to run on many platforms where 32-bit types could be acted upon just as quickly as 16-bit or 8-bit types, but operations on 64-bit types would be noticeably slower. Even on platforms where 16-bit types would be faster to work with, the extra cost of working with 32-bit quantities would be offset by the simplicity afforded by only having 32-bit types.
As for performing floating-point computations on 32-bit values, the advantages are a bit less clear. There are some platforms where a computation like float a=b+c+d; could be performed most quickly by converting all operands to a higher-precision type, adding them, and then converting the result back to a 32-bit floating-point number for storage. There are other platforms where it would be more efficient to perform all computations using 32-bit floating-point values. The creators of Java decided that all platforms should be required to do things the same way, and that they should favor the hardware platforms for which 32-bit floating-point computations are faster than longer ones, even though this severely degraded PC both the speed and precision of floating-point math on a typical PC, as well as on many machines without floating-point units. Note, btw, that depending upon the values of b, c, and d, using higher-precision intermediate computations when computing expressions like the aforementioned float a=b+c+d; will sometimes yield results which are significantly more accurate than would be achieved of all intermediate operands were computed at float precision, but will sometimes yield a value which is a tiny bit less accurate. In any case, Sun decided everything should be done the same way, and they opted for using minimal-precision float values.
Note that the primary advantages of smaller data types become apparent when large numbers of them are stored together in an array; even if there were no advantage to having individual variables of types smaller than 64-bits, it's worthwhile to have arrays which can store smaller values more compactly; having a local variable be a byte rather than an long saves seven bytes; having an array of 1,000,000 numbers hold each number as a byte rather than a long waves 7,000,000 bytes. Since each array type only needs to support a few operations (most notably read one item, store one item, copy a range of items within an array, or copy a range of items from one array to another), the added complexity of having more array types is not as severe as the complexity of having more types of directly-usable discrete numerical values.
If you used the philosophy where integral constants are stored in the smallest type that they fit in, then Java would have a serious problem: whenever programmers write code using integral constants, they have to pay careful attention to their code to check if the type of the constants matter, and if so look up the type in the documentation and/or do whatever type conversions are needed.
So now that we've outlined a serious problem, what benefits could you hope to achieve with that philosophy? I would be unsurprised if the only runtime-observable effect of that change would be what type you get when you look the constant up via reflection. (and, of course, whatever errors are introduced by lazy/unwitting programmers not correctly accounting for the types of the constants)
Weighing the pros and the cons is very easy: it's a bad philosophy.
Actually, there'd be a small advantage. If you have a
class MyTimeAndDayOfWeek {
byte dayOfWeek;
byte hour;
byte minute;
byte second;
}
then on a typical JVM it needs as much space as a class containing a single int. The memory consumption gets rounded to a next multiple of 8 or 16 bytes (IIRC, that's configurable), so the cases when there are real saving are rather rare.
This class would be slightly easier to use if the corresponding Calendar methods returned a byte. But there are no such Calendar methods, only get(int) which must returns an int because of other fields. Each operation on smaller types promotes to int, so you need a lot of casting.
Most probably, you'll either give up and switch to an int or write setters like
void setDayOfWeek(int dayOfWeek) {
this.dayOfWeek = checkedCastToByte(dayOfWeek);
}
Then the type of DAY_OF_WEEK doesn't matter, anyway.
Using variables smaller than the bus size of the CPU means more cycles are necessary. For example when updating a single byte in memory, a 64-bit CPU needs to read a whole 64-bit word, modify only the changed part, then write back the result.
Also, using a smaller data type requires overhead when the variable is stored in a register, since the behavior of the smaller data type to be accounted for explicitly. Since the whole register is used anyways, there is nothing to be gained by using a smaller data type for method parameters and local variables.
Nevertheless, these data types might be useful for representing data structures that require specific widths, such as network packets, or for saving space in large arrays, sacrificing speed.

Memory efficiency in If statements

I'm thinking more about how much system memory my programs will use nowadays. I'm currently doing A level Computing at college and I know that in most programs the difference will be negligible but I'm wondering if the following actually makes any difference, in any language.
Say I wanted to output "True" or "False" depending on whether a condition is true. Personally, I prefer to do something like this:
Dim result As String
If condition Then
Result = "True"
Else
Result = "False"
EndIf
Console.WriteLine(result)
However, I'm wondering if the following would consume less memory, etc.:
If condition Then
Console.WriteLine("True")
Else
Console.WriteLine("False")
EndIf
Obviously this is a very much simplified example and in most of my cases there is much more to be outputted, and I realise that in most commercial programs these kind of statements are rare, but hopefully you get the principle.
I'm focusing on VB.NET here because that is the language used for the course, but really I would be interested to know how this differs in different programming languages.
The main issue making if's fast or slow is predictability.
Modern CPU's (anything after 2000) use a mechanism called branch prediction.
Read the above link first, then read on below...
Which is faster?
The if statement constitutes a branch, because the CPU needs to decide whether to follow or skip the if part.
If it guesses the branch correctly the jump will execute in 0 or 1 cycle (1 nanosecond on a 1Ghz computer).
If it does not guess the branch correctly the jump will take 50 cycles (give or take) (1/200th of a microsecord).
Therefore to even feel these differences as a human, you'd need to execute the if statement many millions of times.
The two statements above are likely to execute in exactly the same amount of time, because:
assigning a value to a variable takes negligible time; on average less than a single cpu cycle on a multiscalar CPU*.
calling a function with a constant parameter requires the use of an invisible temporary variable; so in all likelihood code A compiles to almost the exact same object code as code B.
*) All current CPU's are multiscalar.
Which consumes less memory
As stated above, both versions need to put the boolean into a variable.
Version A uses an explicit one, declared by you; version B uses an implicit one declared by the compiler.
However version A is guaranteed to only have one call to the function WriteLine.
Whilst version B may (or may not) have two calls to the function WriteLine.
If the optimizer in the compiler is good, code B will be transformed into code A, if it's not it will remain with the redundant calls.
How bad is the waste
The call takes about 10 bytes for the assignment of the string (Unicode 2 bytes per char).
But so does the other version, so that's the same.
That leaves 5 bytes for a call. Plus maybe a few extra bytes to set up a stackframe.
So lets say due to your totally horrible coding you have now wasted 10 bytes.
Not much to worry about.
From a maintainability point of view
Computer code is written for humans, not machines.
So from that point of view code A is clearly superior.
Imagine not choosing between 2 options -true or false- but 20.
You only call the function once.
If you decide to change the WriteLine for another function you only have to change it in one place, not two or 20.
How to speed this up?
With 2 values it's pretty much impossible, but if you had 20 values you could use a lookup table.
Obviously that optimization is not worth it unless code gets executed many times.
If you need to know the precise amount of memory the instructions are going to take, you can use ildasm on your code, and see for yourself. However, the amount of memory consumed by your code is much less relevant today, when the memory is so cheap and abundant, and compilers are smart enough to see common patterns and reduce the amount of code that they generate.
A much greater concern is readability of your code: if a complex chain of conditions always leads to printing a conditionally set result, your first code block expresses this idea in a cleaner way than the second one does. Everything else being equal, you should prefer whatever form of code that you find the most readable, and let the compiler worry about optimization.
P.S. It goes without saying that Console.WriteLine(condition) would produce the same result, but that is of course not the point of your question.