Why do API implementers avoid cookie use outside of browsers? - api

A lot of APIs use token auth for authentication and authorization. I thought the original use of token auth schemes were that cookies were intended for browsers and that you could not guarantee that your API consumer would be a browser.
But then when you think about, cookies are almost exactly the same as many token auth schemes that people invent, except that cookies are supported and understood by every web framework out there and have most of the features of token auth, such as expiration dates. Cookies just have a "Cookie:" and "Set-Cookie:" header instead of the usual X-Auth-Token. Why do so many API implementers go out of their way to re-invent the wheel?
Why not make API clients conform to cookie usage (since they will have to learn your token auth scheme anyway)?

Related

Reason to use JWT instead of Cookie authentication for Web Api in ASP.NET Core

According to this (on youtube) conference, we should not use Cookie authentication for Web Api, because in case there are multiple servers on the same domain, there is a possibility for CSRF attack.
another source
He says the following: "we should instead use JWT Bearer tokens"
How exactly using JWT token authentication solves this problem?
EDIT
This sheds some more light on what is going on.
As i understand there are two ways of mitigating CSRF:
Put tokens into Authentication header instead of cookie and store tokens in localStorage. This way they do not get attached if sent by some rogue form as described in the article above. JWT tokens are put into Authentication header?
Another way, as i understand, works by using hidden input field to add antiforgery token. This can be turned on easily in Razor and is supported in Angular. But what about React? This way we can stick with standart Cookie authentication for Web Api? Can we do it in React? Is there any example?
But what about sharing domains, as described in article above? Is there any risk of another app on the shared domain to obtain authentication token or cookie?

What are the main differences between JWT and OAuth authentication?

I have a new SPA with a stateless authentication model using JWT. I am often asked to refer OAuth for authentication flows like asking me to send 'Bearer tokens' for every request instead of a simple token header but I do think that OAuth is a lot more complex than a simple JWT based authentication. What are the main differences, should I make the JWT authentication behave like OAuth?
I am also using the JWT as my XSRF-TOKEN to prevent XSRF but I am being asked to keep them separate? Should I keep them separate? Any help here will be appreciated and might lead to a set of guidelines for the community.
TL;DR
If you have very simple scenarios, like a single client application, a single API then it might not pay off to go OAuth 2.0. On the other hand, if there are lots of different clients (browser-based, native mobile, server-side, etc) then sticking to OAuth 2.0 rules might make it more manageable than trying to roll your own system.
As stated in another answer, JWT (Learn JSON Web Tokens) is just a token format. It defines a compact and self-contained mechanism for transmitting data between parties in a way that can be verified and trusted because it is digitally signed. Additionally, the encoding rules of a JWT also make these tokens very easy to use within the context of HTTP.
Being self-contained (the actual token contains information about a given subject), they are also a good choice for implementing stateless authentication mechanisms (aka Look mum, no sessions!). When going this route, the only thing a party must present to be granted access to a protected resource is the token itself, and the token in question can be called a bearer token.
In practice, what you're doing can already be classified as bearer token -based. However, do consider you're not using bearer tokens as specified by the OAuth 2.0 related specs (see RFC 6750). That would imply relying on the Authorization HTTP header and using the Bearer authentication scheme.
Regarding the use of the JWT to prevent CSRF: Without knowing exact details it's difficult to ascertain the validity of that practice. To be honest, it does not seem correct and/or worthwhile. The following article (Cookies vs Tokens: The Definitive Guide) may be a useful read on this subject, particularly the XSS and XSRF Protection section.
One final piece of advice. Even if you don't need to go full OAuth 2.0, I would strongly recommend on passing your access token within the Authorization header instead of going with custom headers. If they are really bearer tokens, follow the rules of RFC 6750. If not, you can always create a custom authentication scheme and still use that header.
Authorization headers are recognized and specially treated by HTTP proxies and servers. Thus, the usage of such headers for sending access tokens to resource servers reduces the likelihood of leakage or unintended storage of authenticated requests in general, and especially Authorization headers.
(source: RFC 6819, section 5.4.1)
OAuth 2.0 defines a protocol, i.e. specifies how tokens are transferred, JWT defines a token format.
OAuth 2.0 and "JWT authentication" have similar appearance when it comes to the (2nd) stage where the Client presents the token to the Resource Server: the token is passed in a header.
But "JWT authentication" is not a standard and does not specify how the Client obtains the token in the first place (the 1st stage). That is where the perceived complexity of OAuth comes from: it also defines various ways in which the Client can obtain an access token from something that is called an Authorization Server.
So the real difference is that JWT is just a token format, OAuth 2.0 is a protocol (that may use a JWT as a token format).
Firstly, we have to differentiate JWT and OAuth. Basically, JWT is a token format. OAuth is an authorization protocol that can use JWT as a token. OAuth uses server-side and client-side storage. If you want to do real logout you must go with OAuth2. Authentication with JWT token can not logout actually. Because you don't have an Authentication Server that keeps track of tokens. If you want to provide an API to 3rd party clients, you must use OAuth2 also. OAuth2 is very flexible. JWT implementation is very easy and does not take long to implement. If your application needs this sort of flexibility, you should go with OAuth2. But if you don't need this use-case scenario, implementing OAuth2 is a waste of time.
XSRF token is always sent to the client in every response header. It does not matter if a CSRF token is sent in a JWT token or not, because the CSRF token is secured with itself. Therefore sending CSRF token in JWT is unnecessary.
JWT (JSON Web Tokens)- It is just a token format. JWT tokens are JSON encoded data structures contains information about issuer, subject (claims), expiration time etc. It is signed for tamper proof and authenticity and it can be encrypted to protect the token information using symmetric or asymmetric approach. JWT is simpler than SAML 1.1/2.0 and supported by all devices and it is more powerful than SWT(Simple Web Token).
OAuth2 - OAuth2 solve a problem that user wants to access the data using client software like browse based web apps, native mobile apps or desktop apps. OAuth2 is just for authorization, client software can be authorized to access the resources on-behalf of end user using access token.
OpenID Connect - OpenID Connect builds on top of OAuth2 and add authentication. OpenID Connect add some constraint to OAuth2 like UserInfo Endpoint, ID Token, discovery and dynamic registration of OpenID Connect providers and session management. JWT is the mandatory format for the token.
CSRF protection - You don't need implement the CSRF protection if you do not store token in the browser's cookie.
It looks like everybody who answered here missed the moot point of OAUTH
From Wikipedia
OAuth is an open standard for access delegation, commonly used as a way for Internet users to grant websites or applications access to their information on other websites but without giving them the passwords.[1] This mechanism is used by companies such as Google, Facebook, Microsoft and Twitter to permit the users to share information about their accounts with third party applications or websites.
The key point here is access delegation. Why would anyone create OAUTH when there is an id/pwd based authentication, backed by multifactored auth like OTPs and further can be secured by JWTs which are used to secure the access to the paths (like scopes in OAUTH) and set the expiry of the access
There's no point of using OAUTH if consumers access their resources(your end points) only through their trusted websites(or apps) which are your again hosted on your end points
You can go OAUTH authentication only if you are an OAUTH provider in the cases where the resource owners (users) want to access their(your) resources (end-points) via a third-party client(external app). And it is exactly created for the same purpose though you can abuse it in general
Another important note:
You're freely using the word authentication for JWT and OAUTH but neither provide the authentication mechanism. Yes one is a token mechanism and the other is protocol but once authenticated they are only used for authorization (access management). You've to back OAUTH either with OPENID type authentication or your own client credentials
find the main differences between JWT & OAuth
OAuth 2.0 defines a protocol & JWT defines a token format.
OAuth can use either JWT as a token format or access token which is a bearer token.
OpenID connect mostly use JWT as a token format.
JWT is an open standard that defines a compact and self-contained way for securely transmitting information between parties. It is an authentication protocol where we allow encoded claims (tokens) to be transferred between two parties (client and server) and the token is issued upon the identification of a client. With each subsequent request we send the token.
Whereas OAuth2 is an authorization framework, where it has a general procedures and setups defined by the framework. JWT can be used as a mechanism inside OAuth2.
You can read more on this here
OAuth or JWT? Which one to use and why?
Jwt is a strict set of instructions for the issuing and validating of signed access tokens. The tokens contain claims that are used by an app to limit access to a user
OAuth2 on the other hand is not a protocol, its a delegated authorization framework. think very detailed guideline, for letting users and applications authorize specific permissions to other applications in both private and public settings. OpenID Connect which sits on top of OAUTH2 gives you Authentication and Authorization.it details how multiple different roles, users in your system, server side apps like an API, and clients such as websites or native mobile apps, can authenticate with each othe
Note oauth2 can work with jwt , flexible implementation, extandable to different applications
JWT tokens require, at most, a one-time communication between the resource server and the authorization server at runtime. The
resource server needs to request the authorization server for the
public key to decrypt the JWT tokens. This can be done at resource
server startup. This can even be stored in the resource server in a
properties file avoiding the query at all.
OAuth2 solve a problem that user wants to access the data using client software like browser-based web apps, native mobile apps, or
desktop apps. OAuth2 is just for authorization, client software can
be authorized to access the resources on behalf of end-user using an
access token.
OAuth2 can be used with JWT tokens or access token which is a bearer
token.

How is "token auth" any different than "cookie auth"?

On the surface, it seems like "token auth" is basically the same thing as traditional "cookie auth".
Token auth:
User submits username/password to API
API responds with access token
Client stores access token for identifying user in future requests
Cookie auth:
User submits username/password to API
API responds with cookie
Client stores cookie for identifying user in future requests
It seems that token auth is basically the same as cookie auth, except that most HTTP clients already know how to deal with managing cookies automatically, whereas you have to manually manage API tokens.
What am I missing? What are the benefits of using token auth? Is it really worth the extra effort?
Whether the extra effort is worth it, depends on what you are protecting and who is consuming the API.
Token based authentication is much easier when your clients are non-browser based. So if you're targetting mobile applications, token based authentication is worth considering.
But also in a browser scenario it has some advantages. As the browser does not automatically send the Authorization header, security token are not vulnerable to CSRF attacks.
If your web application lives on another domain than you API, cookies will not be sent because of the same-origin policy. Security tokens are not affected by this.

What is the difference between OAuth based and Token based authentication?

I thought that OAuth is basically a token based authentication specification but most of the time frameworks act as if there is a difference between them. For example, as shown in the picture below Jhipster asks whether to use an OAuth based or a token based authentication.
Aren't these the same thing ? What exactly is the difference since both includes tokens in their implementations ?
This is a good question -- there is a lot of confusion around tokens and OAuth.
First up, when you mention OAuth, you are likely referring to the OAuth2 standard. This is the latest version of the OAuth protocol, and is what most people are specifically talking about when they say 'OAuth'.
The OAuth protocol supports several different types of authentication and authorization (4 to be precise).
Secondly, the OAuth protocol works by authenticating users via tokens. The idea here is this:
Instead of having your user send their actual credentials to your server on every single request (like they would with Basic Auth, where a user sends their username/password to the server for each request), with OAuth you first exchange your user credentials for a 'token', and then authenticate users based on this 'token'.
The idea of OAuth is that by requiring users to pass their confidential credentials over the network less frequently, less bad things can happen. (This is the idea, anyhow.)
Now, here's where tokens come into play: the OAuth spec is built around the concept of tokens, but DOES NOT SPECIFY WHAT A TOKEN IS.
In the most 'general' sense, a token is just a string that uniquely identifies a user. That's it.
People realized this, and developed a new standard for creating tokens, called the JSON Web Token standard. This standard basically provides a set of rules for creating tokens in a very specific way, which makes tokens more useful for you in general.
JWTs let you do things like:
Cryptographically sign a token so you know that a token wasn't tampered with by a user.
Encrypt tokens so the contents cannot be read in plain text.
Embed JSON data INSIDE of a token string in a standard way.
Now, for the most part: pretty much everyone in the development community has agreed that if you're using any sort of OAuth, then the tokens you're using should be JSON Web Tokens.
OK! Now that we've covered the backstory, let me answer your question.
The choice you're making above is whether or not you want to enable the full OAuth2 specification for authentication / authorization (which is quite complex), or whether you simply want some basic 'token authentication'.
Because the OAuth protocol provides multiple different ways to authenticate in a STANDARDS COMPLIANT way, it adds a lot of complexity to most authentication systems.
Because of this, a lot of frameworks offer a 'dumbed down' version of the OAuth2 Password Grant flow, which essentially is a simple method where:
A user sends their username/password to your server at some URL like /login.
Your server generates a JWT token for the user.
Your server returns that token to the user.
The user stores this token in their cookies, mobile device, or possible API server, where they use it to make requests.
Again: the flow above is NOT OAuth compliant, but is a slightly simpler version that STILL uses tokens.
The main point here is that tokens (JWTs) are generally useful, and don't NEED to be paired with the OAuth flow.
I realize this is a wall of text, but hopefully it answers your question in more depth =)
OAuth is a specification for authorization not authentication
OAuth 2.0 is a specification for authorization, but NOT for authentication. RFC 6749, 3.1. Authorization Endpoint explicitly says as follows:
The authorization endpoint is used to interact with the resource owner
and obtain an authorization grant. The authorization server MUST first
verify the identity of the resource owner. The way in which the
authorization server authenticates the resource owner (e.g., username
and password login, session cookies) is beyond the scope of this
specification.
Only use OAuth if you want to give access to a third party service to your apis. Even when you are using OAuth you would need some kind of authentication (token based or session based etc) to authenticate the uses. OAuth is not designed for authentication.
see this question.
When you are requesting resource from a secured web service, you can provide an authentication token on the call. The token acts as "secret code" for accessing the resource.
OAuth is just specific type of token based authentication method.

How to combine user- and client-level authentication in an API gateway?

We're looking to implement web (external user) SSO and an API gateway to support web apps and mobile apps, and potentially 3rd party apps and even B2B scenarios.
My thought is to have the SSO gateway handle user-level access to websites and APIs, authenticating end users using OAuth or OpenID Connect.
Sitting behind this, for any API URLs, is the API gateway. This is intended to handle the client-/application-level authentication using something like a client ID and secret.
The idea would be that the user would log into a website or mobile app, and then if/when that app needed to call an API it would need to send its own credentials (client credentials flow) as well as a bearer token proving who the user is as well (resource owner password flow).
The client credentials are less about security and more about coarse-grained access to API functions, giving visibility of API usage, traffic shaping, SLAs etc., but the user identity is needed to enforce data-level authorisation downstream.
Most API gateways I've looked at appear to only support a single level of authentication, e.g. we're looking at Apigee at the moment that can use OAuth to authentication to handle either a user or an app, but it's not obvious how to do both at once.
Is there any way to get the SSO gateway's user bearer token to play nicely with the API gateway's client bearer token or credentials, preferably in a fairly standards-based way? Or do we just have to hack it so that one comes through in the auth header and the other in the payload? Or is there a way to have a combined approach (e.g. hybrid bearer token) that can serve both purposes at once?
I'm kind of surprised that with all the work going on in identity management (OAuth2, OpenID Connect, UMA, etc.) nobody is looking at a way of handling simultaneously the multiple levels of authentication - user, client, device, etc.
Unfortunately I don't have enough reputation points to comment on the previous post, so I'll add my two cents here. Full disclosure: I work for Apigee.
http://apigee.com/docs/api-services/content/oauthv2-policy#accesstokenelement explains how to give the access token to the Apigee OAuthV2 policy in a place other than the Authorization header. If you've stored the SSO bearer token as an attribute of the Apigee OAuth token then once the Apigee token is validated you'll automatically get the SSO bearer token as a flow variable and can use it as needed.
For example, if you send the token as a "token" query parameter on the request you can code the following in the OAuthV2 policy
request.queryparam.token
and the policy will pull it from that query parameter.