I'm reading about production topology for the Analytics part of Worklight 6.2.
https://www-01.ibm.com/support/knowledgecenter/api/content/SSZH4A_6.2.0/com.ibm.worklight.monitor.doc/monitor/t_setting_up_production_cluster.html
It explains that nodes can act both as Master Node or as Data Node or only as one of them.
My question is why we should configure dedicated nodes, Master OR Data instead of configuring all the nodes for both Master AND Data.
I assume the the node (only one) acting as master will provide worst performance in its Data role but on the other hand the configuration will be simpler and the high availability will be higher.
Thank you.
Your assumption is correct.
A master node is responsible for handling communication between the data nodes. The data nodes will be responsible for indexing data. Having dedicated master and data nodes will allow them to focus their processing time and memory on their specific tasks. However, as you mentioned, in some cases its not worth doing this to complicate the configuration.
Another reason is that its not necessary to put a master node on a high performing machine. You can reserve the better machines for the data nodes.
The analytics console uses Elasticsearch under the covers. It would be worth looking up the benefits and drawbacks of choosing master and data nodes in Elasticsearch since it is an open source library and there are several resources available for it.
Edit:
As you can imagine, there is no one size fits all configuration. The configuration depends on several factors such as:
How long you wish to keep data stored
How many machines you have to dedicate to analytics
How verbose your client logs have been set
Your preferences between availability and performance
In my personal tests, I typically keep each node as a data and master node. Its possible that in the future we will document how the different configurations affect performance.
Related
Mirroring is replicating data between Kafka cluster, while Replication is for replicating nodes within a Kafka cluster.
Is there any specific use of Replication, if Mirroring has already been setup?
They are used for different use cases. Let's try to clarify.
As described in the documentation,
The purpose of adding replication in Kafka is for stronger durability and higher availability. We want to guarantee that any successfully published message will not be lost and can be consumed, even when there are server failures. Such failures can be caused by machine error, program error, or more commonly, software upgrades. We have the following high-level goals:
Inside a cluster there might be network partitions (a single server fails, and so forth), therefore we want to provide replication between the nodes. Given a setup of three nodes and one cluster, if server1 fails, there are two replicas Kafka can choose from. Same cluster implies same response times (ok, it also depends on how these servers are configured, sure, but in a normal scenario they should not differ so much).
Mirroring, on the other hand, seems to be very valuable, for example, when you are migrating a data center, or when you have multiple data centers (e.g., AWS in the US and AWS in Ireland). Of course, these are just a couple of use cases. So what you do here is to give applications belonging to the same data center a faster and better way to access data - data locality in some contexts is everything.
If you have one node in each cluster, in case of failure, you might have way higher response times to go, let's say, from AWS located in Ireland to AWS in the US.
You might claim that in order to achieve data locality (services in cluster one read from kafka in cluster one) one still needs to copy the data from one cluster to the other. That's definitely true, but the advantages you might get with mirroring could be higher than those you would get by reading directly (via an SSH tunnel?) from Kafka located in another data center, for example single connections down, clients connection/session times longer (depending on the location of the data center), legislation (some data can be collected in a country while some other data shouldn't).
Replication is the basis of higher availability. You shouldn't use Mirroring to handle high availability in a context where data locality matters. At the same time, you should not use just Replication where you need to duplicate data across data centers (I don't even know if you can without Mirroring/an ssh tunnel).
I'm a newbie to Redis and I was wondering if someone could help me to understand if it can be the right tool.
This is my scenario:
I have many different nodes, everyone behaving like a master and accepting clients connections to read and write a few geographical data data and the timestamp of the incoming record.
Each master node could be hosted onto a drone that only randomly get in touch and can comunicate with others, accordind to network conditions; when this happens they should synchronize their data according to their age (only the ones more recent than a specified time).
Is there any way to achieve this by Redis or do I have to implement this feature at application level?
I tried master/slaves configuration without success and I was wondering if Redis Cluster can somewhat meet my neeeds.
I googled around, but what I found had not an answer good for me
https://serverfault.com/questions/717406/redis-multi-master-replication
Using Redis Replication on different machines (multi master)
Teo, as a matter of fact, redis don't have a multi master replication.
And the cluster shard it's data through different instances. Say you have only two redis instances. Instance1 will accept store and retrieve instance1 and instance2 data. But he will ask for, and store in, instance2 every key that does not belong to his shard.
This is not, I think, really what you want. You could give a try to PostgreSQL+BDR as PostgreSQL supports nosql store and BDR provides a real master master replication (https://wiki.postgresql.org/wiki/BDR_Project) if that's really what you need.
I work with both today (and also MongoDB). Each one with a different goal. Redis would provide a smaller overhead and memory use, fast connection and fast replication. But it won't provide multi master (if you really need it).
According to this link which belongs to JBoss documentation, I understood that Infinispan is a better product than JBoss Cache and kind of improvement the reason for which they recommend to migrate from JBoss Cache to Infinispan, that is supported by JBoss as well. Am I right in what I understood? Otherwise, are there differences?
One more question : Talking about replication and distribution, can any one of them be better than the other according to the need?
Thank you
Question:
Talking about replication and distribution, can any one of them be better than the other according to the need?
Answer:
I am taking a reference directly from Clustering modes - Infinispan
Distributed:
Number of copies represents the tradeoff between performance and durability of data
The more copies you maintain, the lower performance will be, but also the lower the risk of losing data due to server outages
use of a consistent hash algorithm to determine where in a cluster entries should be stored
No need to replicate data on each node that takes more time than just communicating hash code
Best suitable if no of nodes are high
Best suitable if size of data stored in cache is high.
Replicated:
Entries added to any of these cache instances will be replicated to all other cache instances in the cluster
This clustered mode provides a quick and easy way to share state across a cluster
replication practically only performs well in small clusters (under 10 servers), due to the number of replication messages that need to happen - as the cluster size increases
Practical Experience:
I are using Infinispan cache in my running live application on Jboss server having 8 nodes. Initially I used replicated cache but it took much longer time to respond due to large size of data. Finally we come back to Distributed and now its working fine.
Use replicated or distributed cache only for data specific to any user session. If data is common regardless of any user than prefer Local cache that's created separately for each node.
I am using redis version 2.8.3. I want to build a redis cluster. But in this cluster there should be multiple master. This means I need multiple nodes that has write access and applying ability to all other nodes.
I could build a cluster with a master and multiple slaves. I just configured slaves redis.conf files and added that ;
slaveof myMasterIp myMasterPort
Thats all. Than I try to write something into db via master. It is replicated to all slaves and I really like it.
But when I try to write via a slave, it told me that slaves have no right to write. After that I just set read-only status of slave in redis.conf file to false. Hence, I could write something into db.
But I realize that, it is not replicated to my master replication so it is not replicated to all other slave neigther.
This means I could'not build an active-active cluster.
I tried to find something whether redis has active-active cluster capability. But I could not find exact answer about it.
Is it available to build active-active cluster with redis?
If it is, How can I do it ?
Thank you!
Redis v2.8.3 does not support multi-master setups. The real question, however, is why do you want to set one up? Put differently, what challenge/problem are you trying to solve?
It looks like the challenge you're trying to solve is how to reduce the network load (more on that below) by eliminating over-the-net reads. Since Redis isn't multi-master (yet), the only way to do it is by setting up each app server with a master and a slave (to the other master) - i.e. grand total of 4 Redis instances (and twice the RAM).
The simple scenario is when each app updates only a mutually-exclusive subset of the database's keys. In that scenario this kind of setup may actually be beneficial (at least in the short term). If, however, both apps can touch all keys or if even just one key is "shared" for writes between the apps, then you'll need to bake locking/conflict resolution/etc... logic into your apps to consolidate local master and slave differences (and that may be a bit of an overkill). In either case, however, you'll end up with too many (i.e. more than 1) Redises, which means more admin effort at the very least.
Also note that by colocating app and database on the same server you're setting yourself for near-certain scalability failure. What will happen when you need more compute resources for your apps or Redis? How will you add yet another app server to the mix?
Which brings me back to the actual problem you are trying to solve - network load. Why exactly is that an issue? Are your apps so throughput-heavy or is the network so thin that you are willing to go to such lengths? Or maybe latency is the issue that you want to resolve? Be the case as it may be, I recommended that you consider a time-proven design instead, namely separating Redis from the apps and putting it on its own resources. True, network will hit you in the face and you'll have to work around/with it (which is what everybody else does). On the other hand, you'll have more flexibility and control over your much simpler setup and that, in my book, is a huge gain.
Redis Enterprise has had this feature for quite a while, but if you are looking for an open source solution KeyDB is a fork with Active Active support (called Active Replica).
Setting it up is just a little more work than standard replication:
Both servers must have "active-replica yes" in their respective configuration files
On server B execute the command "replicaof [A address] [A port]"
Server B will drop its database and load server A's dataset
On server A execute the command "replicaof [B address] [B port]"
Server A will drop its database and load server B's dataset (including the data it just transferred in the prior step)
Both servers will now propagate writes to each other. You can test this by writing to a key on Server A and ensuring it is visible on B and vice versa.
https://github.com/JohnSully/KeyDB/wiki/KeyDB-(Redis-Fork):-Active-Replica-Support
My understanding could be amiss here. As I understand it, Couchbase uses a smart client to automatically select which node to write to or read from in a cluster. What I DON'T understand is, when this data is written/read, is it also immediately written to all other nodes? If so, in the event of a node failure, how does Couchbase know to use a different node from the one that was 'marked as the master' for the current operation/key? Do you lose data in the event that one of your nodes fails?
This sentence from the Couchbase Server Manual gives me the impression that you do lose data (which would make Couchbase unsuitable for high availability requirements):
With fewer larger nodes, in case of a node failure the impact to the
application will be greater
Thank you in advance for your time :)
By default when data is written into couchbase client returns success just after that data is written to one node's memory. After that couchbase save it to disk and does replication.
If you want to ensure that data is persisted to disk in most client libs there is functions that allow you to do that. With help of those functions you can also enshure that data is replicated to another node. This function is called observe.
When one node goes down, it should be failovered. Couchbase server could do that automatically when Auto failover timeout is set in server settings. I.e. if you have 3 nodes cluster and stored data has 2 replicas and one node goes down, you'll not lose data. If the second node fails you'll also not lose all data - it will be available on last node.
If one node that was Master goes down and failover - other alive node becames Master. In your client you point to all servers in cluster, so if it unable to retreive data from one node, it tries to get it from another.
Also if you have 2 nodes in your disposal you can install 2 separate couchbase servers and configure XDCR (cross datacenter replication) and manually check servers availability with HA proxies or something else. In that way you'll get only one ip to connect (proxy's ip) which will automatically get data from alive server.
Hopefully Couchbase is a good system for HA systems.
Let me explain in few sentence how it works, suppose you have a 5 nodes cluster. The applications, using the Client API/SDK, is always aware of the topology of the cluster (and any change in the topology).
When you set/get a document in the cluster the Client API uses the same algorithm than the server, to chose on which node it should be written. So the client select using a CRC32 hash the node, write on this node. Then asynchronously the cluster will copy 1 or more replicas to the other nodes (depending of your configuration).
Couchbase has only 1 active copy of a document at the time. So it is easy to be consistent. So the applications get and set from this active document.
In case of failure, the server has some work to do, once the failure is discovered (automatically or by a monitoring system), a "fail over" occurs. This means that the replicas are promoted as active and it is know possible to work like before. Usually you do a rebalance of the node to balance the cluster properly.
The sentence you are commenting is simply to say that the less number of node you have, the bigger will be the impact in case of failure/rebalance, since you will have to route the same number of request to a smaller number of nodes. Hopefully you do not lose data ;)
You can find some very detailed information about this way of working on Couchbase CTO blog:
http://damienkatz.net/2013/05/dynamo_sure_works_hard.html
Note: I am working as developer evangelist at Couchbase