Does Collection preserve ordering? - vba

While searching a way to update an entry in a collection I found that I should use a Dictionary instead. In a comment somebody said that it should be noted that the Dictionary does not preserve order. But does the Collection preserve order? Even if you delete elements and so on?

Yes, the Collection preserves the order of items.
A Dictionary is "optimised" to provide fast access to members via an arbitrary key. There is no particular order to either keys or values, because content might get reorganised any time.
A "simple" Collection is an unordered list of objects. They are just stored in the same sequence you have inserted them. Only if you remove or insert items (versus append them) the sequence can get changed.
There's a great article over at Experts Exchange that presents the commonalities and differences of Collections and Dictionaries and when to use one or the other.
Just for completeness, this SO question discusses the merits of Arrays vs. Collections (I thought I should mention Arrays, as they are often neglected in such discussions).

Related

SQL many value in one var [duplicate]

So, per Mehrdad's answer to a related question, I get it that a "proper" database table column doesn't store a list. Rather, you should create another table that effectively holds the elements of said list and then link to it directly or through a junction table. However, the type of list I want to create will be composed of unique items (unlike the linked question's fruit example). Furthermore, the items in my list are explicitly sorted - which means that if I stored the elements in another table, I'd have to sort them every time I accessed them. Finally, the list is basically atomic in that any time I wish to access the list, I will want to access the entire list rather than just a piece of it - so it seems silly to have to issue a database query to gather together pieces of the list.
AKX's solution (linked above) is to serialize the list and store it in a binary column. But this also seems inconvenient because it means that I have to worry about serialization and deserialization.
Is there any better solution? If there is no better solution, then why? It seems that this problem should come up from time to time.
... just a little more info to let you know where I'm coming from. As soon as I had just begun understanding SQL and databases in general, I was turned on to LINQ to SQL, and so now I'm a little spoiled because I expect to deal with my programming object model without having to think about how the objects are queried or stored in the database.
Thanks All!
John
UPDATE: So in the first flurry of answers I'm getting, I see "you can go the CSV/XML route... but DON'T!". So now I'm looking for explanations of why. Point me to some good references.
Also, to give you a better idea of what I'm up to: In my database I have a Function table that will have a list of (x,y) pairs. (The table will also have other information that is of no consequence for our discussion.) I will never need to see part of the list of (x,y) pairs. Rather, I will take all of them and plot them on the screen. I will allow the user to drag the nodes around to change the values occasionally or add more values to the plot.
No, there is no "better" way to store a sequence of items in a single column. Relational databases are designed specifically to store one value per row/column combination. In order to store more than one value, you must serialize your list into a single value for storage, then deserialize it upon retrieval. There is no other way to do what you're talking about (because what you're talking about is a bad idea that should, in general, never be done).
I understand that you think it's silly to create another table to store that list, but this is exactly what relational databases do. You're fighting an uphill battle and violating one of the most basic principles of relational database design for no good reason. Since you state that you're just learning SQL, I would strongly advise you to avoid this idea and stick with the practices recommended to you by more seasoned SQL developers.
The principle you're violating is called first normal form, which is the first step in database normalization.
At the risk of oversimplifying things, database normalization is the process of defining your database based upon what the data is, so that you can write sensible, consistent queries against it and be able to maintain it easily. Normalization is designed to limit logical inconsistencies and corruption in your data, and there are a lot of levels to it. The Wikipedia article on database normalization is actually pretty good.
Basically, the first rule (or form) of normalization states that your table must represent a relation. This means that:
You must be able to differentiate one row from any other row (in other words, you table must have something that can serve as a primary key. This also means that no row should be duplicated.
Any ordering of the data must be defined by the data, not by the physical ordering of the rows (SQL is based upon the idea of a set, meaning that the only ordering you should rely on is that which you explicitly define in your query)
Every row/column intersection must contain one and only one value
The last point is obviously the salient point here. SQL is designed to store your sets for you, not to provide you with a "bucket" for you to store a set yourself. Yes, it's possible to do. No, the world won't end. You have, however, already crippled yourself in understanding SQL and the best practices that go along with it by immediately jumping into using an ORM. LINQ to SQL is fantastic, just like graphing calculators are. In the same vein, however, they should not be used as a substitute for knowing how the processes they employ actually work.
Your list may be entirely "atomic" now, and that may not change for this project. But you will, however, get into the habit of doing similar things in other projects, and you'll eventually (likely quickly) run into a scenario where you're now fitting your quick-n-easy list-in-a-column approach where it is wholly inappropriate. There is not much additional work in creating the correct table for what you're trying to store, and you won't be derided by other SQL developers when they see your database design. Besides, LINQ to SQL is going to see your relation and give you the proper object-oriented interface to your list automatically. Why would you give up the convenience offered to you by the ORM so that you can perform nonstandard and ill-advised database hackery?
You can just forget SQL all together and go with a "NoSQL" approach. RavenDB, MongoDB and CouchDB jump to mind as possible solutions. With a NoSQL approach, you are not using the relational model..you aren't even constrained to schemas.
What I have seen many people do is this (it may not be the best approach, correct me if I am wrong):
The table which I am using in the example is given below(the table includes nicknames that you have given to your specific girlfriends. Each girlfriend has a unique id):
nicknames(id,seq_no,names)
Suppose, you want to store many nicknames under an id. This is why we have included a seq_no field.
Now, fill these values to your table:
(1,1,'sweetheart'), (1,2,'pumpkin'), (2,1,'cutie'), (2,2,'cherry pie')
If you want to find all the names that you have given to your girl friend id 1 then you can use:
select names from nicknames where id = 1;
Simple answer: If, and only if, you're certain that the list will always be used as a list, then join the list together on your end with a character (such as '\0') that will not be used in the text ever, and store that. Then when you retrieve it, you can split by '\0'. There are of course other ways of going about this stuff, but those are dependent on your specific database vendor.
As an example, you can store JSON in a Postgres database. If your list is text, and you just want the list without further hassle, that's a reasonable compromise.
Others have ventured suggestions of serializing, but I don't really think that serializing is a good idea: Part of the neat thing about databases is that several programs written in different languages can talk to one another. And programs serialized using Java's format would not do all that well if a Lisp program wanted to load it.
If you want a good way to do this sort of thing there are usually array-or-similar types available. Postgres for instance, offers array as a type, and lets you store an array of text, if that's what you want, and there are similar tricks for MySql and MS SQL using JSON, and IBM's DB2 offer an array type as well (in their own helpful documentation). This would not be so common if there wasn't a need for this.
What you do lose by going that road is the notion of the list as a bunch of things in sequence. At least nominally, databases treat fields as single values. But if that's all you want, then you should go for it. It's a value judgement you have to make for yourself.
In addition to what everyone else has said, I would suggest you analyze your approach in longer terms than just now. It is currently the case that items are unique. It is currently the case that resorting the items would require a new list. It is almost required that the list are currently short. Even though I don't have the domain specifics, it is not much of a stretch to think those requirements could change. If you serialize your list, you are baking in an inflexibility that is not necessary in a more-normalized design. Btw, that does not necessarily mean a full Many:Many relationship. You could just have a single child table with a foreign key to the parent and a character column for the item.
If you still want to go down this road of serializing the list, you might consider storing the list in XML. Some databases such as SQL Server even have an XML data type. The only reason I'd suggest XML is that almost by definition, this list needs to be short. If the list is long, then serializing it in general is an awful approach. If you go the CSV route, you need to account for the values containing the delimiter which means you are compelled to use quoted identifiers. Persuming that the lists are short, it probably will not make much difference whether you use CSV or XML.
If you need to query on the list, then store it in a table.
If you always want the list, you could store it as a delimited list in a column. Even in this case, unless you have VERY specific reasons not to, store it in a lookup table.
Many SQL databases allow a table to contain a subtable as a component. The usual method is to allow the domain of one of the columns to be a table. This is in addition to using some convention like CSV to encode the substructure in ways unknown to the DBMS.
When Ed Codd was developing the relational model in 1969-1970, he specifically defined a normal form that would disallow this kind of nesting of tables. Normal form was later called First Normal Form. He then went on to show that for every database, there is a database in first normal form that expresses the same information.
Why bother with this? Well, databases in first normal form permit keyed access to all data. If you provide a table name, a key value into that table, and a column name, the database will contain at most one cell containing one item of data.
If you allow a cell to contain a list or a table or any other collection, now you can't provide keyed access to the sub items, without completely reworking the idea of a key.
Keyed access to all data is fundamental to the relational model. Without this concept, the model isn't relational. As to why the relational model is a good idea, and what might be the limitations of that good idea, you have to look at the 50 years worth of accumulated experience with the relational model.
I'd just store it as CSV, if it's simple values then it should be all you need (XML is very verbose and serializing to/from it would probably be overkill but that would be an option as well).
Here's a good answer for how to pull out CSVs with LINQ.
Only one option doesn't mentioned in the answers. You can de-normalize your DB design. So you need two tables. One table contains proper list, one item per row, another table contains whole list in one column (coma-separated, for example).
Here it is 'traditional' DB design:
List(ListID, ListName)
Item(ItemID,ItemName)
List_Item(ListID, ItemID, SortOrder)
Here it is de-normalized table:
Lists(ListID, ListContent)
The idea here - you maintain Lists table using triggers or application code. Every time you modify List_Item content, appropriate rows in Lists get updated automatically. If you mostly read lists it could work quite fine. Pros - you can read lists in one statement. Cons - updates take more time and efforts.
I was very reluctant to choose the path I finally decide to take because of many answers. While they add more understanding to what is SQL and its principles, I decided to become an outlaw. I was also hesitant to post my findings as for some it's more important to vent frustration to someone breaking the rules rather than understanding that there are very few universal truthes.
I have tested it extensively and, in my specific case, it was way more efficient than both using array type (generously offered by PostgreSQL) or querying another table.
Here is my answer:
I have successfully implemented a list into a single field in PostgreSQL, by making use of the fixed length of each item of the list. Let say each item is a color as an ARGB hex value, it means 8 char. So you can create your array of max 10 items by multiplying by the length of each item:
ALTER product ADD color varchar(80)
In case your list items length differ you can always fill the padding with \0
NB: Obviously this is not necessarily the best approach for hex number since a list of integers would consume less storage but this is just for the purpose of illustrating this idea of array by making use of a fixed length allocated to each item.
The reason why:
1/ Very convenient: retrieve item i at substring i*n, (i +1)*n.
2/ No overhead of cross tables queries.
3/ More efficient and cost-saving on the server side. The list is like a mini blob that the client will have to split.
While I respect people following rules, many explanations are very theoretical and often fail to acknowledge that, in some specific cases, especially when aiming for cost optimal with low-latency solutions, some minor tweaks are more than welcome.
"God forbid that it is violating some holy sacred principle of SQL": Adopting a more open-minded and pragmatic approach before reciting the rules is always the way to go. Else you might end up like a candid fanatic reciting the Three Laws of Robotics before being obliterated by Skynet
I don't pretend that this solution is a breakthrough, nor that it is ideal in term of readability and database flexibility, but it can certainly give you an edge when it comes to latency.
What I do is that if the List required to be stored is small then I would just convert it to a string then split it later when required.
example in python -
for y in b:
if text1 == "":
text1 = y
else:
text1 = text1 + f"~{y}"
then when I required it I just call it from the db and -
out = query.split('~')
print(out)
this will return a list, and a string will be stored in the db. But if you are storing a lot of data in the list then creating a table is the best option.
If you really wanted to store it in a column and have it queryable a lot of databases support XML now. If not querying you can store them as comma separated values and parse them out with a function when you need them separated. I agree with everyone else though if you are looking to use a relational database a big part of normalization is the separating of data like that. I am not saying that all data fits a relational database though. You could always look into other types of databases if a lot of your data doesn't fit the model.
I think in certain cases, you can create a FAKE "list" of items in the database, for example, the merchandise has a few pictures to show its details, you can concatenate all the IDs of pictures split by comma and store the string into the DB, then you just need to parse the string when you need it. I am working on a website now and I am planning to use this way.
you can store it as text that looks like a list and create a function that can return its data as an actual list. example:
database:
_____________________
| word | letters |
| me | '[m, e]' |
| you |'[y, o, u]' | note that the letters column is of type 'TEXT'
| for |'[f, o, r]' |
|___in___|_'[i, n]'___|
And the list compiler function (written in python, but it should be easily translatable to most other programming languages). TEXT represents the text loaded from the sql table. returns list of strings from string containing list. if you want it to return ints instead of strings, make mode equal to 'int'. Likewise with 'string', 'bool', or 'float'.
def string_to_list(string, mode):
items = []
item = ""
itemExpected = True
for char in string[1:]:
if itemExpected and char not in [']', ',', '[']:
item += char
elif char in [',', '[', ']']:
itemExpected = True
items.append(item)
item = ""
newItems = []
if mode == "int":
for i in items:
newItems.append(int(i))
elif mode == "float":
for i in items:
newItems.append(float(i))
elif mode == "boolean":
for i in items:
if i in ["true", "True"]:
newItems.append(True)
elif i in ["false", "False"]:
newItems.append(False)
else:
newItems.append(None)
elif mode == "string":
return items
else:
raise Exception("the 'mode'/second parameter of string_to_list() must be one of: 'int', 'string', 'bool', or 'float'")
return newItems
Also here is a list-to-string function in case you need it.
def list_to_string(lst):
string = "["
for i in lst:
string += str(i) + ","
if string[-1] == ',':
string = string[:-1] + "]"
else:
string += "]"
return string
Imagine your grandmother's box of recipes, all written on index cards. Each of those recipes is a list of ingredients, which are themselves ordered pairs of items and quantities. If you create a recipe database, you wouldn't need to create one table for the recipe names and a second table where each ingredient was a separate record. That sounds like what we're saying here. My apologies if I've misread anything.
From Microsoft's T-SQL Fundamentals:
Atomicity of attributes is subjective in the same way that the
definition of a set is subjective. As an example, should an employee
name in an Employees relation be expressed with one attribute
(fullname), two (firstname and lastname), or three (firstname,
middlename, and lastname)? The answer depends on the application. If
the application needs to manipulate the parts of the employee’s name
separately (such as for search purposes), it makes sense to break them
apart; otherwise, it doesn’t.
So, if you needed to manipulate your list of coordinates via SQL, you would need to split the elements of the list into separate records. But is you just wanted to store a list and retrieve it for use by some other software, then storing the list as a single value makes more sense.

Postgresql performance comparison between arrays and joins

What are the performance implications in postgres of using an array to store values as compared to creating another table to store the values with a has-many relationship?
I have one table that needs to be able to store anywhere from about 1-100 different string values in either an array column or a separate table. These values will need to be frequently searched for exact matches, so lookup performance is critical. Would the array solution be faster, or would it be faster to use joins to lookup the values in the separate table?
These values will need to be frequently searched
Searched how? This is crucial.
Prefix pattern match only? Infix/suffix pattern matches too? Fuzzy string search / similarity matching? Stubbing and normalization for root words, de-pluralization? Synonym search? Is the data character sequences or natural language text? One language, or multiple different languages?
Hand-waving around "searched" makes any answer that ignores that part pretty much invalid.
so lookup performance is critical. Would the array solution be faster, or would it be faster to use joins to lookup the values in the separate table?
Impossible to be strictly sure without proper info on the data you're searching.
Searching text fields is much more flexible, giving you many options you don't have with an array search. It also generally reduces the amount of data that must be read.
In general, I strongly second Clodaldo: Design it right. Optimize later, if you need to.
According to the official PostgreSQL reference documentation, searching for specific elements in a table is expected to perform better than in an array
https://www.postgresql.org/docs/current/arrays.html#ARRAYS-SEARCHING :
Arrays are not sets; searching for specific array elements can be a
sign of database misdesign. Consider using a separate table with a row
for each item that would be an array element. This will be easier to
search, and is likely to scale better for a large number of elements.
The reason for the worse search performance on array elements than on tables could be that arrays are internally stored as strings as stated here
https://www.postgresql.org/message-id/op.swbsduk5v14azh%40oren-mazors-computer.local
the array is actually stored as a string by postgres. a string that
happens to have lots of brackets in it.
although I could not corroborate this statement by any official PostgreSQL documentation. I also do not have any evidence that handling well-structured strings is necessarily less performant than handling tables.

What sorting technique does merge sort use while merging

At the last but one step of the merge sort where we have two sorted lists and we are trying to combine them into one sorted list, how would the logic go?
This is what my naive mind came up with:
Take each element of list #1 and compare it with each element of list#2 and find its place in list #2. BAsically like an insertion sort.
But obviously this is not how it happens because this gives me a complexity of O(n^2).
But merge sort is O(nlogn). So how does the final step happens?
It uses merge sort. Merge sort doesn't have a separate sorting algorithm, it IS a sorting algorithm.
So your original lists are already sorted, so the smallest element is always at the beginning. Compare A and B. Take the lesser of the two and add it to the end of the result list. Repeat until both source lists are empty.
It depends heavily on how you've structured the data you're sorting.
Merge sort tends to be used primarily for external sorting, such as sorting files on disk. In this case, you normally take inputs from some number of input files, and write the results to a separate output file.
If you're sorting linked lists, you generally do about the same -- take N input lists and produce one output list. Since you can move elements from one list to another just by manipulating the links, this doesn't require (much) extra storage or time.
You really seem to be asking about sorting an array in place. If you want to merge-sort an array in-place, there are a couple of algorithms known, but they're somewhat non-trivial.
[I don't like using only links to what I'd guess is the real answer here, but the algorithms really are a bit much to try to even outline here.]

Select subsets of collection type values

Using CQL3 collection types, how can I select parts of a collection? There are examples given to update and set collection types, but it doesn't seem possible to only query subsets of the values in such a type.
You can't select a specific element within a collection (yet).
Docs
You can only retrieve a collection in its entirety. And while we may (or may not) relax that rule a bit in the future, this still means that collections are not meant to be excessively large. They are not a replacement for a proper modelisation into tables.

When to choose a Dictionary ADT

In college we learned the three main abstract data types were Containers (Stacks, Queues, and Tables), Dictionaries, and Priority Queues. There are probably an unlimited number of ways to group ADTs at a high level like this, but this is a good start.
I don't really understand when you would choose a Dictionary ADT to solve a computational problem though. Stacks and Queues seem to come up naturally, but not dictionaries.
The one example I can think of is a dictionary in the sense we use it in the real world. A dictionary keeps and ordered set of words for fast lookup, and what you get when you look up a word is: correct spelling, how to pronounce the word, what part of speech it is, definition of the word, etc.
As I'm starting to understand it better, the more it seems like a "dictionary" is another way to think of querying a database. When you write a SQL SELECT statement, you're usually looking for a when a primary key equals a certain value (not always of course, you can select on any field that exists in a table).
Is this the correct way to think of a Dictionary ADT? Or is the intended use more limited than this...
Your SQL example is pretty accurate. You're searching for a primary key (the key of the dictionary entry) to get some fields (the values) associated with it.
I personally found dictionaries useful in my game programming courses. I would load my resources and then cache them into a dictionary for later use. This way, I didn't have to know an index number for a specific resource, I could give it a key that would relate to the resource.