I am using Mindstorms and build a Robot with two Motors and a IR Sensor.
1) I made a program which lets the Robot follow a IR signal and stops when reaching it.
2) I made a program to remote control the robot with the IR control.
Both program work. But when combining them, program 1 does not work anymore.
It gives eratic results from the IR sensor. It seams the detecting a IR-Button is not compatible with measuring the signal in the same program. Anyone has similar experiance or know how to deal with it?
This is the program which works:
Introducing another Selection around it which senses a IR Button does not work anymore:
The result is, that the program follows to the right section, but the IR measurements of distance and directions give random results.
Anyone has any Idea?
If you have already tried another sensor and there is still a problem it could possibly be a bug with the software. I would post your example on the the NI MINDSTORMS support board so that they can look into the bug.
http://forums.ni.com/t5/LabVIEW-for-LEGO-MINDSTORMS-and/bd-p/460
As explained here:
http://www.edn.com/design/sensors/4407580/Brushless-DC-Motors-Part-II--Control-Principles
, switching the motor windings should occur when the back-emf voltage across the 1/2 VDCC value. How to effectively perform that in stm32f4 which don't has embedded comparator module?
It seems the only way is using analog watchdog with selecting next single waited channel at every moment when interrupt happens?
And how to be if I want drive 4 bldc from single stm32 chip?
There are few ways you can achieve this. The most popular way with STM32's are sensing the floating phase. The technique is little different to what your link is suggesting, nevertheless there are plenty of example codes to get this going.
Here is a nice explanation of ST's patented 3 resistor BLDLC position sensing method (and some other techniques).
A nice starting point would be this manual.
STM32 supports for two motor control timers (TIM1 and TIM8). You can use them to drive 2 BLDC motors. Nonetheless, it would not limit you to use other timers in combination in order to drive more BLDCs but would demand some additional programming complexity.
The wife asked for a device to make the xmas lights 'rock' with the best of music. I am going to use an Arduino micro-controller to control relays hooked up to the lights, sending down 6 signals from C# winforms to turn them off and on. I want to use NAduio to separate the amplitude and rhythm to send the six signals. For a specific range of hertz like an equalizer with six bars for the six signals, then the timing from the rhythm. I have seen the WPF demo, and the waveform seems like the answer. I want to know how to get those values real time while the song is playing.
I'm thinking ...
1. Create a simple mp3 player and load all my songs.
2. Start the songs playing.
3. Sample the current dynamics of the song and put that into an integer that I can send to which channel on the Arduino micro-controller via usb.
I'm not sure how to capture real time the current sound information and give integer values for that moment. I can read the e.MaxSampleValues[0] values real time while the song is playing, but I want to be able to distinguish what frequency range is active at that moment.
Any help or direction would be appreciated for this interesting project.
Thank you
Sounds like a fun signal processing project.
Using the NAudio.Wave.WasapiLoopbackCapture object you can get the audio data being produced from the sound card on the local computer. This lets you skip the 'create an MP3 player' step, although at the cost of a slight delay between sound and lights. To get better synchronization you can do the MP3 decoding and pre-calculate the beat patterns and output states during playback. This will let you adjust the delay between sending the outputs and playing the audio block those outputs were generated from, getting near perfect synchronization between lights and music.
Once you have the samples, the next step is to use an FFT to find the frequency components. Fortunately NAudio includes a class to help with this: NAudio.Dsp.FastFourierTransform. (Thank you Mark!) Take the output of the FFT() function and sum out the frequency ranges you want for each controlled light.
The next step is Beat Detection. There's an interesting article on this here. The main difference is that instead of doing energy detection on a stream of sample blocks you'll be using the data from your spectral analysis stage to feed the beat detection algorithm. Those ranges you summed become inputs into individual beat detection processors, giving you one output for each frequency range you defined. You might want to add individual scaling/threshold factors for each frequency group, with some sort of on-screen controls to adjust these for best effect.
At the end of the process you will have a stream of sample blocks, each with a set of output flags. Push the flags out to your Arduino and queue the samples to play, with a delay on either of those operations to achieve your synchronization.
I'm working on an arcade cabinet that will be able to play various video game consoles (real hardware, not emulated.) There will be a PC inside to run a selection menu. I'll have to write that myself. I'll also need program a PLC which will do various things like control the relays which switch audio/video/controls between the PC and the various consoles, etc. I'll need help with those two tasks in time, but they are not what I'm working on right now.
What I'm working on as a starting point has to do with the controller encoding. Basically, the controls for each player consist of a few buttons and a joystick. These use momentary, normally-open contact switches, one for each button, and one for each cardinal direction on the joystick. Pressing the button, or joystick direction, closes the switch. The state of the buttons is then communicated to the console by an encoder.
The encoder has a connection for each button and joystick direction which is connected to 5 volts ("high") through a pull-up resistor. When a button or direction is pressed, a connection to ground is made through the momentary switch. When the encoder reads ground ("low") on a button connection, it knows that a button has been pressed and it communicates this to the console.
I already have all this working with the various consoles, but I've thought of some features that would be nice to add. This is where my current task comes in.
The first feature is button remapping. Some of these games were designed with controllers in mind, so when you use them with an arcade control panel, some of the buttons may not be where you want them. Some games allow buttons to be remapped via software, but others do not. My idea is to add a PLC in between the joystick and buttons and the encoder. I'll call this PLC a "pre-encoder."
The pre-encoder would read the states of the buttons on some input pins, then write these states back to some output pins, relaying them to the encoder. The advantage is that its programming could associate any input pin with any output pin, effectively remapping the buttons. Whenever a console is selected via the computer's menu, a button-mapping profile associated with a particular game could be selected as well, and forwarded to the pre-encoder.
Of course, the pre-encoder's routine which reads the buttons and relays their states to the encoder must repeat very quickly for smooth control. These games will be running at about 50 to 60Hz, meaning a new a video frame every 16.67ms or less. Ideally, the pre-encoder will be able to repeat this routine many, many times per frame to ensure the absolute minimum input lag. I want to ensure that the code and hardware selection is optimized to run as fast as possible.
The second feature is turbo buttons. Some games, especially arcade games, require a fire button to be pressed repeatedly every time you want to fire your gun, or your ship's cannons, etc, even if you have unlimited ammo. This seems unnecessary, and it will tire your fingers out pretty quickly. A turbo button is one that can be held down continuously, yet the game is being told that you are rapidly pressing and releasing it. This could be done in software for anything running on the PC, or with an analog solution like a 555 timer, but the best method is to synchronize the turbo button timing with the video refresh rate. By feeding the vertical sync pulse from the PC or video game console's video output to a PLC, it will know exactly how often a frame of video is rendered. Turbo button timing can then be controlled by defining, in numbers of frames, the periods when the button should be pressed and released. Timing information could also be included with the game-specific button profiles.
The third feature is slow buttons. Actually, this would probably only be applied to the joystick, but I'm referring to the switches for its cardinal directions as buttons. In certain games (it will probably only be used in shmups) it is sometimes needed to move your character (ship/plane) through very tight spaces. If movement is too fast in response to even minimal joystick input, you may go too far and crash. The idea is that, while a slow activation button is held, the joystick will be made less responsive by rapidly activating and deactivating it in the same manner as the turbo buttons.
I'm not sure if I want the pre-encoder itself to be watching the vertical sync pulse or if it will slow it down too much. My current thinking is that a seperate PLC will be responsible for general management of the cab itself; watching the "on" button, switching relays, communicating directly with the PC, watching the vertical sync pulse, etc. This will free up the pre-encoder to run more quickly.
Here is some example "code" for the pre-encoder. Obviously, it's just a rough outline of what I have in mind, as I don't even know what language it will be. This example assumes that a dedicated PLC will be used just as the pre-encoder. A separate PLC will be responsible for watching the vertical sync pulse, in addition to other tasks, like getting a game profile from the computer and passing some of that info to the pre-encoder. That PLC will know what the frame timing should be for turbo and slow functions, it will count frames, and during frames when turbo buttons should be disabled, it outputs high to a pin on the pre-encoder PCB, letting it know to disable turbo buttons. During frames when it should be enabled, it outputs low to that pin. Same idea with the slow buttons. There is also a pin which the pre-encoder checks at the end of its routine, so it can be told to stop and await a different game profile.
get info from other PLC (which got it from the computer, from a user-selected game profile):
array containing list of turbo buttons (buttons are identified by what input pin they are connected to)
array containing list of slow buttons (will probably only be the joystick directions, if any)
array containing list of slow activation buttons (should normally be only one button, if any)
array containing list of normal buttons (not turbo or slow)
array containing which output pin to use for each button (this determines remapping)
Begin Loop
if turbo pin is high
for each turbo button
output pin = high
next
else
for each turbo button
output pin = input pin
next
end if
if slow pin is high and slow activation button is pressed
for each slow button
output pin = high
next
else
for each slow button
output pin = input pin
next
end if
for each normal button
output pin = input pin
next
Restart Loop unless stop pin is low
If you've read all this, thank you for your time. So (finally), here are my questions:
What are your overall thoughts; on my idea in general, feasibility, etc.?
What kind of PLC should I use for the pre-encoder? I was originally thinking of trying an Arduino, but my reading indicates that it will be much too slow, due to its use of high-level programming libraries. I don't have a problem building my own board around another PLC.
What language should I use to program the PLC? I don't mind learning a new language. There's no time limit on this project, and I'll put it in whatever it takes to get the pre-encoder running as fast as possible.
What will I need to flash my program onto the PLC?
At run-time, how should these PLC's communicate with each other, and with the PC?
Am I asking in the right place; right forum, right section, etc.? Anywhere else I should ask?
Awaiting your response eagerly,
-Rob
I have some thoughts that might be useful to you:
What are your overall thoughts; on my idea in general, feasibility, etc.?
This project sounds like you want to cheat at Defender, like I used to do with a 555 timer chip in my Atari joystick when I was a kid.
The project is feasible but you will need a pretty fast PLC.
You might spend a lot of time making this work, like a quest.
What kind of PLC should I use for the pre-encoder? I was originally thinking of trying an Arduino, but my reading indicates that it will be much too slow, due to its use of high-level programming libraries. I don't have a problem building my own board around another PLC.
As I thought of what PLC might be fast enough, a few things came to mind.
If you use a PLC that has a task architecture, you can use an event to trigger a task on the v-sync pulse, and another event to trigger on console activity. If you use a PLC without a task architecture, the user might recognize the variable latency that will occur as the program scan moves in and out of phase with the v-sync and the activity in the game. This might not be true if the PLC is fast enough, say 1ms scan time.
Most inexpensive PLCs are never going to make it. The overhead and performance will keep most PLCs around 5-10ms per scan. However, a PC-based PLC might work well. So maybe a Beckhoff controller will work nicely. If you use something like a CX2000, it has Windows 7, USB, DVI for the user interface, and an Ethercat bus on the side to attach physical I/O cards for the controller and console connections. See about the software below. There are many non-PC-based PLCs that would work fine, but these will likely be expensive and harder to integrate.
The Arduino solution should work if you are using a fast enough model. But your development time will be higher because it doesn't come with anything but a blank screen and a bunch of libraries. Troubleshooting is much more of a pain-in-the-neck than PLCs that really shine. You'll need to plan carefully to get the Arduino to work. Also, hardware interfacing a microcontroller is harder and you'll have to manage debouncing the switches in your code. Every PLC has filtering in its inputs, and the variety of I/O makes design easy. But, the Arduino or other microcontroller is really the choice if money is an issue. A fast PLC can be real expensive ($800 to $20k, think around $1500). If you are going to build more than a few systems, the Arduino might be better.
What language should I use to program the PLC? I don't mind learning a new language. There's no time limit on this project, and I'll put it in whatever it takes to get the pre-encoder running as fast as possible.
IEC61131 is a standard for PLC programming languages. In the USA most PLCs are programmed in ladder logic because it is really easy to learn and quicker to troubleshoot and maintain in machinery. Structured text has its advantages too, particularly in performance. It looks like some amalgamation of basic/C/Java, easy to learn and looks almost like your pseudocode example. As for your project, I think it could be programmed in either language. I would never use the other IEC61131 languages for this task.
Beckhoff TwinCAT3 uses MS Visual Studio as the IDE, where you can write both the selection menu (in VB/C++/C#) and the PLC code (in IEC61131) in the same project. The runtime license for TwinCAT (on the CX2000 unit) runs in kernel mode, providing processing performance to Windows 7 whenever it is not doing something else more important. I've used a few CX1020 models and they were great performers. The scan times were around 5ms with a significant amount of code. Faster units will scan <1ms.
What will I need to flash my program onto the PLC?
PLCs don't "flash" like microcontrollers. Whatever software you use to write the software will have a way to connect to the controller. The term "go online" makes the connection. The terms "download" and "upload" refer to transferring the program between the development computer and the PLC. The term "online edit" refers to making code changes while the PLC is executing the code. When modern PLCs are powered down, they use a battery to copy program and user RAM to flash. When they power up, they copy the flash back to RAM. To make a connection to any modern PLC, you will use a USB or Ethernet cable.
At run-time, how should these PLC's communicate with each other, and with the PC?
You plan more than one PLC? A PLC connection to a PC is a complicated subject. The term "OPC Server" refers to some [expensive] software that lets your custom Windows PC application access memory in PLCs. The Beckhoff solution glues all that together nicely without buying more stuff. PLC to PLC communication is easier. The method is usually by ethernet and varies widely as to the details.
Am I asking in the right place; right forum, right section, etc.? Anywhere else I should ask?
Sure, there is some PLC activity on this forum, which appears to tend toward hardcore PC/Web/Mobile development. I come here for awesomely intelligent answers to my deeper software questions.
You could try plctalk.net, a forum that is a little more geared toward nuts-and-bolts engineers and service techs with wild connectivity and compatibility questions related to machinery and automation. You might get some blank stares about vertical sync pulses. Their skill sets revolve around an industrial paradigm, where reliability is probably their highest calling.
You might also ask questions about performance on an Arduino or Microchip/Atmel/ARM forums. If you tell them that a PLC is faster than their hardware, that will rile them up real good! They might tell you that you can get microsecond performance numbers, which you can if you are using hardware interrupts and lots of physical circuitry to make that a reality, and you are able to cope with the sleepless nights of troubleshooting.
-Dennis
I'd like to start out with the Arduino to make something that will (preferably) dim my room lights and turn on some recessed lighting for my computer when a button or switch is activated.
First of all, is this even possible with the Arduino?
Secondly, how would I switch on and off real lights with it? Some sort of relay, maybe?
Does anyone know of a good tutorial or something where at least parts of this are covered? I'll have no problems with the programming, just don't know where to start with hardware.
An alternative (and safer than playing with triacs – trust me I've been shocked by one once and that's enough!) is to use X-10 home automation devices.
There is a PC (RS232) device (CM12U UK or CM11 US) you can get to control the others. You can also get lamp modules that fit between your lamp and the wall outlet which allows you to dim the lamp by sending signals over the mains and switch modules which switch loads on and off.
The Arduino has a TTL level RS232 connector (it's basically what the USB connection uses) – Pins 0 and 1 on the Diecimila so you could use that, connect it via a level converter which you can buy or make and connect to the X-10 controller, theirs instructions on the on the Arduino website for making a RS232 port.
Alternatively you could use something like the FireCracker for X-10 which uses 310MHz (US) or 433MHz (UK) and have your Arduino send out RF signals which the TM12U converts into proper X-10 mains signals for the dimmers etc.
In the US the X-10 modules are really cheep as well (sadly not the case in the UK).
Most people do it using triacs. A triac is like two diodes in anti-parallel (in parallel, but with their polarity reversed) with a trigger pin. A triac conducts current in either direction only when it's triggered. Once triggered, it acts as a regular diode, it continues to conduct until the current drops bellow its threshold.
You can see it as a bi-directional switch on a AC line and can vary the mean current by triggering it in different moments relative to the moment the AC sine-wave crosses zero.
Roughly, it works like this: At the AC sine-wave zero, your diodes turn off and your lamp doesn't get any power. If you trigger the diodes, say, halfway through the sine's swing, you lamp will get half the normal current it would get, so it lights with half of it's power, until the sine-wave crosses zero again. At this point you start over.
If you trigger the triac sooner, your lamp will get current for a longer time interval, glowing brighter. If you trigger your triac latter, your lamp glows fainter.
The same applies to any AC load.
It is almost the same principle of PWM for DC. You turn your current source on and off quicker than your load can react, The amount of time it is turned on is proportional to the current your load will receive.
How do you do that with your arduino?
In simple terms you must first find the zero-crossing of the mains, then you set up a timer/delay and at its end you trigger the triac.
To detect the zero-crossing one normally uses an optocoupler. You connect the led side of the coupler with the mains and the transistor side with the interrupt pin of your arduino.
You can connect your arduino IO pins directly to the triacs' triggers, bu I would use another optocoupler just to be on the safe side.
When the sine-wave approaches zero, you get a pulse on your interrupt pin.
At this interrupt you set up a timer. the longer the timer, the less power your load will get. You also reset your triacs' pins state.
At this timers' interrupt you set your IO pins to trigger the triacs.
Of course you must understand a little about the hardware side so you don't fry your board, and burn your house,
And it goes without saying you must be careful not to kill yourself when dealing with mains AC =).
HERE is the project that got me started some time ago.
It uses AVRs so it should be easy to adapt to an arduino.
It is also quite complete, with schematics.
Their software is a bit on the complex side, so you should start with something simpler.
There is just a ton of this kind of stuff at the Make magazine site. I think you can even find some examples of similar hacks.
I use MOSFET for dimming 12V LED strips using Arduino. I chose IRF3710 for my project with a heat sink to be sure, and it works fine. I tested with 12V halogen lamp, it worked too.
I connect PWM output pin from Arduino directly to mosfet's gate pin, and use analogWrite in code to control brightness.
Regarding 2nd question about controlling lights, you can switch on/off 220V using relays, as partially seen on my photo, there are many boards for this, I chose this:
As a quick-start, you can get yourself one of those dimmerpacks (50-80€ for four lamps).
then build the electronics for the arduino to send DMX controls:
Arduino DMX shield
You'll get yourself both the arduino-expirience + a good chance of not frying your surrounding with higher voltage..