Start again from latest schema with liquibase - liquibase

I am using liquibase 3.2.0 on ORCID, and finding it really useful.
We now have over 200 changeSets on top of the original schema.
These run many times during unit tests because we are using an in memory database (hsqldb).
I would like to 'reset' liquibase by making a new install.xml from the current schema, so that we do not have to run all the changeSets every time.
However, the production database (postgres) has a databasechangelog table with all the old changeSets, so it will try to apply the new install.xml.
How can I start again from a new install.xml without causing problems for production?
Will

Restarting a changeLog from scratch is the same as adding liquibase to an existing project, which is discussed in documentation here
I generally recommend against resetting your changeLog, however, because normally the costs outweigh any benefits in performance. Your 200 changeSet changelog has been fully tested and you know it is correct whereas something regenerated manually or with generateChangeLog can easily have minor differences that can cause problems.
For existing databases, the startup cost of parsing the changelog file and comparing it to the contents of databasechangelog is very low, regardless of the number of changeSets.
For a new database, especially in-memory databases, DDL operations are generally very fast and the speed of going through 200 changeSets to build up your database will probably not be a lot different than building it up in 50 changeSets.
IF there are performance differences, what I've generally seen is that there are a few isolated changeSets that are the problem such as creating an index then dropping it then creating it again. I would recommend looking for any changeSets that may be a problem and carefully removing or combining them vs. a wholesale redo of the changelog.

Related

Does performance issues occur with increase in changesets?

My company uses liquibase to keep track of database changes. Everyday around 100 new changesets are being added. From what I understand for already executed changesets liquibase computes checksum again and compares it with checksum in databasechangelog table to see whether checksum has changed and gives checksum issue if it is changed.
So after few months when I have large number of changesets already executed, If I add a new changeset doesn't this process of computing checksum of already executed changesets and comparing them make the execution of new changesets slower or cause any performance related issues?
I've never stumbled across this kind of performance issues with liquibase.
But I guess your question raises a couple of more questions:
what do you consider to be "slower"?
when performance starts to become an issue and is it really an issue?
maybe something's wrong with your application's architecture?
Anyway, comparing checksums against DATABASECHANGELOG table shouldn't take a lot of time - it could be couple of seconds, if you have lots and lots of changeSets.
According to liquibase documentation:
Other times, the problem is that liquibase update is taking too long.
Liquibase tries to be as efficient as possible when comparing the
contents of the DATBASECHANGELOG table with the current changelog file
and even if there are thousands of already ran changeSets, an “update”
command should take just seconds to run.
But if these seconds really make an issue, then consider reading this article:
Trimming ChangeLog Files

How to Version Control The Baseline Of DB Schema in Liquibase

I currently evaluate how my organisation could make use of liquibase as DB versioning system.
However, I do have difficulties on how the liquibase philosophy fits into our current workflow:
Currently we have the CREATE and initial fill sql scripts of our application under version control. As soon as there is a change (e.g. new column) the programmer adjusts the CREATE script and checks the changes in. Since application code and SQL scripts are in the same repository the DB objects should be always in sync with the application version.
Additionally, for each release we maintain a list of ALTER... statements which are used when the customer upgrades our software (which is much more often the case then installing from the scratch).
So we have two worlds - the current version of the schema objects as CREATE statements in the repository plus a list of necessary actions to get from version 1 to 2 (ALTER statements).
What I like is that the definition of the schema objects always matches the version of the software since the are in the same version control repository.
What I don't like (and hence looking for an alternative) is the double work we have to do. Furthermore, since the software is more updated than newly installed, the CREATE statements are more of a documentation but are rarely applied to the database.
What I understood is, that liquibase starts with a baseline and is then operating on small change sets. So I would once check in the base line and then add my small change sets.
Over the time I might have an old baseline with lots of change sets. I assume I then have to manually generate a new baseline out of old baseline + changesets and start from there again. This sounds rather confusing to me. I'm also not sure if my co-workers would see the benefits compared to our current workflow.
What would you recommend?
This is just my opinion, so take it as such.
The Liquibase philosophy is that the baselines you mention are not needed, as long as the database can be queried to see what changes have been applied to it, so your assumption that you would have to periodically generate a new baseline is incorrect.
Let's compare how your process works vs. the Liquibase process.
In your current system, as you said, developers have to maintain two sets of SQL scripts and your testers have to ensure that they are correct. When users install, your installer has to detect whether it is a clean install and run just the 'create' scripts. When the installer detects an upgrade, it has to take a different path (possibly using some complex logic) to determine which of the alter scripts to run. Your organization has to maintain the installer code that does the upgrade logic.
Using Liquibase, developers would only create the 'alter' part of the database scripts. For a new install, it might take fractionally longer to run all the Liquibase statements than it would take to run the create scripts in your current system, but the benefit is reduced duplication and therefore reduced bugs. For upgrade installs, Liquibase determines by looking at the installed database which changes are in place and only runs the changes that are necessary to bring the database up to date with the code that is being installed.

How to properly manage database deployment with SSDT and Visual Studio 2012 Database Projects?

I'm in the research phase trying to adopt 2012 Database Projects on an existing small project. I'm a C# developer, not a DBA, so I'm not particularly fluent with best practices. I've been searching google and stackoverflow for a few hours now but I still don't know how to handle some key deployment scenarios properly.
1) Over the course of several development cycles, how do I manage multiple versions of my database? If I have a client on v3 of my database and I want to upgrade them to v8, how do I manage this? We currently manage hand-crafted schema and data migration scripts for every version of our product. Do we still need to do this separately or is there something in the new paradigm that supports or replaces this?
2) If the schema changes in such a way that requires data to be moved around, what is the best way to handle this? I assume some work goes in the Pre-Deployment script to preserve the data and then the Post-Deploy script puts it back in the right place. Is that the way of it or is there something better?
3) Any other advice or guidance on how best to work with these new technologies is also greately appreciated!
UPDATE: My understanding of the problem has grown a little since I originally asked this question and while I came up with a workable solution, it wasn't quite the solution I was hoping for. Here's a rewording of my problem:
The problem I'm having is purely data related. If I have a client on version 1 of my application and I want to upgrade them to version 5 of my application, I would have no problems doing so if their database had no data. I'd simply let SSDT intelligently compare schemas and migrate the database in one shot. Unfortunately clients have data so it's not that simple. Schema changes from version 1 of my application to version 2 to version 3 (etc) all impact data. My current strategy for managing data requires I maintain a script for each version upgrade (1 to 2, 2 to 3, etc). This prevents me from going straight from version 1 of my application to version 5 because I have no data migration script to go straight there. The prospect creating custom upgrade scripts for every client or managing upgrade scripts to go from every version to every greater version is exponentially unmanageable. What I was hoping was that there was some sort of strategy SSDT enables that makes managing the data side of things easier, maybe even as easy as the schema side of things. My recent experience with SSDT has not given me any hope of such a strategy existing but I would love to find out differently.
I've been working on this myself, and I can tell you it's not easy.
First, to address the reply by JT - you cannot dismiss "versions", even with declarative updating mechanics that SSDT has. SSDT does a "pretty decent" job (provided you know all the switches and gotchas) of moving any source schema to any target schema, and it's true that this doesn't require verioning per se, but it has no idea how to manage "data motion" (at least not that i can see!). So, just like DBProj, you left to your own devices in Pre/Post scripts. Because the data motion scripts depend on a known start and end schema state, you cannot avoid versioning the DB. The "data motion" scripts, therefore, must be applied to a versioned snapshot of the schema, which means you cannot arbitrarily update a DB from v1 to v8 and expect the data motion scripts v2 to v8 to work (presumably, you wouldn't need a v1 data motion script).
Sadly, I can't see any mechanism in SSDT publishing that allows me to handle this scenario in an integrated way. That means you'll have to add your own scafolding.
The first trick is to track versions within the database (and SSDT project). I started using a trick in DBProj, and brought it over to SSDT, and after doing some research, it turns out that others are using this too. You can apply a DB Extended Property to the database itself (call it "BuildVersion" or "AppVersion" or something like that), and apply the version value to it. You can then capture this extended property in the SSDT project itself, and SSDT will add it as a script (you can then check the publish option that includes extended properties). I then use SQLCMD variables to identify the source and target versions being applied in the current pass. Once you identify the delta of versions between the source (project snapshot) and target (target db about to be updated), you can find all the snapshots that need to be applied. Sadly, this is tricky to do from inside the SSDT deployment, and you'll probably have to move it to the build or deployment pipeline (we use TFS automated deployments and have custom actions to do this).
The next hurdle is to keep snapshots of the schema with their associated data motion scripts. In this case, it helps to make the scripts as idempotent as possible (meaning, you can rerun the scripts without any ill side-effects). It helps to split scripts that can safely be rerun from scripts that must be executed one time only. We're doing the same thing with static reference data (dictionary or lookup tables) - in other words, we have a library of MERGE scripts (one per table) that keep the reference data in sync, and these scripts are included in the post-deployment scripts (via the SQLCMD :r command). The important thing to note here is that you must execute them in the correct order in case any of these reference tables have FK references to each other. We include them in the main post-deploy script in order, and it helps that we created a tool that generates these scripts for us - it also resolves dependency order. We run this generation tool at the close of a "version" to capture the current state of the static reference data. All your other data motion scripts are basically going to be special-case and most likely will be single-use only. In that case, you can do one of two things: you can use an IF statement against the db build/app version, or you can wipe out the 1 time scripts after creating each snapshot package.
It helps to remember that SSDT will disable FK check constraints and only re-enable them after the post-deployment scripts run. This gives you a chance to populate new non-null fields, for example (by the way, you have to enable the option to generate temporary "smart" defaults for non-null columns to make this work). However, FK check constraints are only disabled for tables that SSDT is recreating because of a schema change. For other cases, you are responsible for ensuring that data motion scripts run in the proper order to avoid check constraints complaints (or you manually have disable/re-enable them in your scripts).
DACPAC can help you because DACPAC is essentially a snapshot. It will contain several XML files describing the schema (similar to the build output of the project), but frozen in time at the moment you create it. You can then use SQLPACKAGE.EXE or the deploy provider to publish that package snapshot. I haven't quite figured out how to use the DACPAC versioning, because it's more tied to "registered" data apps, so we're stuck with our own versioning scheme, but we do put our own version info into the DACPAC filename.
I wish I had a more conclusive and exhasutive example to provide, but we're still working out the issues here too.
One thing that really sucks about SSDT is that unlike DBProj, it's currently not extensible. Although it does a much better job than DBProj at a lot of different things, you can't override its default behavior unless you can find some method inside of pre/post scripts of getting around a problem. One of the issues we're trying to resolve right now is that the default method of recreating a table for updates (CCDR) really stinks when you have tens of millions of records.
-UPDATE: I haven't seen this post in some time, but apparently it's been active lately, so I thought I'd add a couple of important notes: if you are using VS2012, the June 2013 release of SSDT now has a Data Comparison tool built-in, and also provides extensibility points - that is to say, you can now include Build Contributors and Deployment Plan Modifiers for the project.
I haven't really found any more useful information on the subject but I've spent some time getting to know the tools, tinkering and playing, and I think I've come up with some acceptable answers to my question. These aren't necessarily the best answers. I still don't know if there are other mechanisms or best practices to better support these scenarios, but here's what I've come up with:
The Pre- and Post-Deploy scripts for a given version of the database are only used migrate data from the previous version. At the start of every development cycle, the scripts are cleaned out and as development proceeds they get fleshed out with whatever sql is needed to safely migrate data from the previous version to the new one. The one exception here is static data in the database. This data is known at design time and maintains a permanent presence in the Post-Deploy scripts in the form of T-SQL MERGE statements. This helps make it possible to deploy any version of the database to a new environment with just the latest publish script. At the end of every development cycle, a publish script is generated from the previous version to the new one. This script will include generated sql to migrate the schema and the hand crafted deploy scripts. Yes, I know the Publish tool can be used directly against a database but that's not a good option for our clients. I am also aware of dacpac files but I'm not really sure how to use them. The generated publish script seems to be the best option I know for production upgrades.
So to answer my scenarios:
1) To upgrade a database from v3 to v8, I would have to execute the generated publish script for v4, then for v5, then for v6, etc. This is very similar to how we do it now. It's well understood and Database Projects seem to make creating/maintaining these scripts much easier.
2) When the schema changes from underneath data, the Pre- and Post-Deploy scripts are used to migrate the data to where it needs to go for the new version. Affected data is essentially backed-up in the Pre-Deploy script and put back into place in the Post-Deploy script.
3) I'm still looking for advice on how best to work with these tools in these scenarios and others. If I got anything wrong here, or if there are any other gotchas I should be aware of, please let me know! Thanks!
In my experience of using SSDT the notion of version numbers (i.e. v1, v2...vX etc...) for databases kinda goes away. This is because SSDT offers a development paradigm known as declarative database development which loosely means that you tell SSDT what state you want your schema to be in and then let SSDT take responsibility for getting it into that state by comparing against what you already have. In this paradigm the notion of deploying v4 then v5 etc.... goes away.
Your pre and post deployment scripts, as you correctly state, exist for the purposes of managing data.
Hope that helps.
JT
I just wanted to say that this thread so far has been excellent.
I have been wrestling with the exact same concerns and am attempting to tackle this problem in our organization, on a fairly large legacy application. We've begun the process of moving toward SSDT (on a TFS branch) but are at the point where we really need to understand the deployment process, and managing custom migrations, and reference/lookup data, along the way.
To complicate things further, our application is one code-base but can be customized per 'customer', so we have about 190 databases we are dealing with, for this one project, not just 3 or so as is probably normal. We do deployments all the time and even setup new customers fairly often. We rely heavily on PowerShell now with old-school incremental release scripts (and associated scripts to create a new customer at that version). I plan to contribute once we figure this all out but please share whatever else you've learned. I do believe we will end up maintaining custom release scripts per version, but we'll see. The idea about maintaining each script within the project, and including a From and To SqlCmd variable is very interesting. If we did that, we would probably prune along the way, physically deleting the really old upgrade scripts once everybody was past that version.
BTW - Side note - On the topic of minimizing waste, we also just spent a bunch of time figuring out how to automate the enforcement of proper naming/data type conventions for columns, as well as automatic generation for all primary and foreign keys, based on naming conventions, as well as index and check constraints etc. The hardest part was dealing with the 'deviants' that didn't follow the rules. Maybe I'll share that too one day if anyone is interested, but for now, I need to pursue this deployment, migration, and reference data story heavily. Thanks again. It's like you guys were speaking exactly what was in my head and looking for this morning.

Do you put your indexes in source control?

And how do you keep them in synch between test and production environments?
When it comes to indexes on database tables, my philosophy is that they are an integral part of writing any code that queries the database. You can't introduce new queries or change a query without analyzing the impact to the indexes.
So I do my best to keep my indexes in synch betweeen all of my environments, but to be honest, I'm not doing very well at automating this. It's a sort of haphazard, manual process.
I periodocally review index stats and delete unnecessary indexes. I usually do this by creating a delete script that I then copy back to the other environments.
But here and there indexes get created and deleted outside of the normal process and it's really tough to see where the differences are.
I've found one thing that really helps is to go with simple, numeric index names, like
idx_t_01
idx_t_02
where t is a short abbreviation for a table. I find index maintenance impossible when I try to get clever with all the columns involved, like,
idx_c1_c2_c5_c9_c3_c11_5
It's too hard to differentiate indexes like that.
Does anybody have a really good way to integrate index maintenance into source control and the development lifecycle?
Indexes are a part of the database schema and hence should be source controlled along with everything else. Nobody should go around creating indexes on production without going through the normal QA and release process- particularly performance testing.
There have been numerous other threads on schema versioning.
The full schema for your database should be in source control right beside your code. When I say "full schema" I mean table definitions, queries, stored procedures, indexes, the whole lot.
When doing a fresh installation, then you do:
- check out version X of the product.
- from the "database" directory of your checkout, run the database script(s) to create your database.
- use the codebase from your checkout to interact with the database.
When you're developing, every developer should be working against their own private database instance. When they make schema changes they checkin a new set of schema definition files that work against their revised codebase.
With this approach you never have codebase-database sync issues.
Yes, any DML or DDL changes are scripted and checked in to source control, mostly thru activerecord migrations in rails. I hate to continually toot rails' horn, but in many years of building DB-based systems I find the migration route to be so much better than any home-grown system I've used or built.
However, I do name all my indexes (don't let the DBMS come up with whatever crazy name it picks). Don't prefix them, that's silly (because you have type metadata in sysobjects, or in whatever db you have), but I do include the table name and columns, e.g. tablename_col1_col2.
That way if I'm browsing sysobjects I can easily see the indexes for a particular table (also it's a force of habit, wayyyy back in the day on some dBMS I used, index names were unique across the whole DB, so the only way to ensure that is to use unique names).
I think there are two issues here: the index naming convention, and adding database changes to your source control/lifecycle. I'll tackle the latter issue.
I've been a Java programmer for a long time now, but have recently been introduced to a system that uses Ruby on Rails for database access for part of the system. One thing that I like about RoR is the notion of "migrations". Basically, you have a directory full of files that look like 001_add_foo_table.rb, 002_add_bar_table.rb, 003_add_blah_column_to_foo.rb, etc. These Ruby source files extend a parent class, overriding methods called "up" and "down". The "up" method contains the set of database changes that need to be made to bring the previous version of the database schema to the current version. Similarly, the "down" method reverts the change back to the previous version. When you want to set the schema for a specific version, the Rails migration scripts check the database to see what the current version is, then finds the .rb files that get you from there up (or down) to the desired revision.
To make this part of your development process, you can check these into source control, and season to taste.
There's nothing specific or special about Rails here, just that it's the first time I've seen this technique widely used. You can probably use pairs of SQL DDL files, too, like 001_UP_add_foo_table.sql and 001_DOWN_remove_foo_table.sql. The rest is a small matter of shell scripting, an exercise left to the reader.
I always source-control SQL (DDL, DML, etc). Its code like any other. Its good practice.
I am not sure indexes should be the same across different environments since they have different data sizes. Unless your test and production environments have the same exact data, the indexes would be different.
As to whether they belong in source control, am not really sure.
I do not put my indexes in source control but the creation script of the indexes. ;-)
Index-naming:
IX_CUSTOMER_NAME for the field "name" in the table "customer"
PK_CUSTOMER_ID for the primary key,
UI_CUSTOMER_GUID, for the GUID-field of the customer which is unique (therefore the "UI" - unique index).
On my current project, I have two things in source control - a full dump of an empty database (using pg_dump -c so it has all the ddl to create tables and indexes) and a script that determines what version of the database you have, and applies alters/drops/adds to bring it up to the current version. The former is run when we're installing on a new site, and also when QA is starting a new round of testing, and the latter is run at every upgrade. When you make database changes, you're required to update both of those files.
Using a grails app the indexes are stored in source control by default since you are defining the index definition inside of a file that represents your domain object. Just offering the 'Grails' perspective as an FYI.

Best Database Change Control Methodologies

As a database architect, developer, and consultant, there are many questions that can be answered. One, though I was asked recently and still can't answer good, is...
"What is one of, or some of, the best methods or techniques to keep database changes documented, organized, and yet able to roll out effectively either in a single-developer or multi-developer environment."
This may involve stored procedures and other object scripts, but especially schemas - from documentation, to the new physical update scripts, to rollout, and then full-circle. There are applications to make this happen, but require schema hooks and overhead. I would rather like to know about techniques used without a lot of extra third-party involvement.
The easiest way I have seen this done without the aid of an external tool is to create a "schema patch" if you will. The schema patch is just a simple t-sql script. The schema patch is given a version number within the script and this number is stored in a table in the database to receive the changes.
Any new changes to the database involve creating a new schema patch that you can then run in sequence which would then detect what version the database is currently on and run all schema patches in between. Afterwards the schema version table is updated with whatever date/time the patch was executed to store for the next run.
A good book that goes into details like this is called Refactoring Databases.
If you wish to use an external tool you can look at Ruby's Migrations project or a similar tool in C# called Migrator.NET. These tools work by creating c# classes/ruby classes with an "Forward" and "Backward" migration. These tools are more feature rich because they know how to go forward as well as backwards in the schema patches. As you stated however, you are not interested in an external tool, but I thought I would add that for other readers anyways.
I rather liked this series:
http://odetocode.com/Blogs/scott/archive/2008/02/03/11746.aspx
In my case I have a script generate every time I change the database, I named the script like 00001.sql, n.sql and I have a table with de number of last script I have execute. You can also see Database Documentation
as long as you add columns/tables to your database it will be an easy task by scripting these changes in advance in sql-files. you just execute them. maybe you have some order to execute them.
a good solution would be to make one file per table, so that all changes belonging to this table would be visible to who-ever is working on the table (its like working on a class). the same is valid for stored procedures or views.
a more difficult task (and therefore maybe tools would be good) is to step back. as long as you just added tables/columns maybe this would not be a big issue. but if you have dropped columns on an update, and now you have to undo your update, the data is not there anymore. you will need to get this data from the backup. but keep in mind, if you have more then a few tables this could be a big task, and in the normal case you should undo your update very fast!
if you could just restore the backup, then its fine in this moment. but, if you update on monday, your clients work till wednesday and then they see that some data is missing (which you just dropped out of a table) then you could not just restore the old database.
i have a model-based approach in my mind (sorry, not implemented at the moment) in which schema-changes are "modeled" (e.g. per xml) and during an update a processor (e.g. a c# program) creates all necessary "sql" and e.g. moves data to a "dropDatabase". the data can reside there, and if for some reason i need to restore some of the dropped data, i can just do it with the processor. i think over some time (years) this approach is not as bad because otherwise developers don't touch "old" tables because they don't know anymore if the table or column is really necessary. with this approach you don't risk too lot if you drop something!
What I do is:
All the DDL commands required to recreate the schema (and the stored procedures and the indexes, etc) are in a script.
To be sure the script is OK, it is tested from time to time (create a database, run the script and restore the backup and check the database works well).
For change control, the script is kept in a Version Control System (I typically use Subversion).
The trick is that, if the database cannot be brought down to recreate with, say, an added column, I have two changes to make, an ALTER TABLE + a modification in the script. A bit more work but, in the long term, it wins.