Neural Network in VB.NET - vb.net

I want to implement a very simple neural net in VB.NET.
I have array of integer, that is actually unmapped from black and white bitmap - we can assume every integer is 1 or 0. There is 1 spot painted on the bitmap, nothing else. I want to create and train the neural network to tell me if it's more like:
1-circle
2-square
3-horizontal line
4-vertical line
5-horizontal ellipse
6-vertical ellipse
7-horizontal and vertical elipses merged
8-vertical and horizontal elipses merged
9-2horizontal elipses merged
And the shapes are really ugly, but a person can clearly make this decision, so I think a NN can be easily trained to do that. But I'm new to neural networks, and I have no idea how to approach the problem, for example different spots have various sizes so I don't know how to get fixed number of inbuts to feed in my NN - resizing is not an option

One option would be to use an existing Neural Net implementation, I'd recommend checking out the Accord.Net libary and the corresponding Accord.Neuro namespace.
Neural nets have been used successfully for handwriting recognition, which may be close to your problem. Check out the article Classifying Digits with Deep Belief Nets which includes a sample using Accord.Net.
Note: you would need hand labelled set of data to train the neural net with.

Related

Implement CVAE for a single image

I have a multi-dimensional, hyper-spectral image (channels, width, height = 15, 2500, 2500). I want to compress its 15 channel dimensions into 5 channels.So, the output would be (channels, width, height = 5, 2500, 2500). One simple way to do is to apply PCA. However, performance is not so good. Thus, I want to use Variational AutoEncoder(VAE).
When I saw the available solution in Tensorflow or keras library, it shows an example of clustering the whole images using Convolutional Variational AutoEncoder(CVAE).
https://www.tensorflow.org/tutorials/generative/cvae
https://keras.io/examples/generative/vae/
However, I have a single image. What is the best practice to implement CVAE? Is it by generating sample images by moving window approach?
One way of doing it would be to have a CVAE that takes as input (and output) values of all the spectral features for each of the spatial coordinates (the stacks circled in red in the picture). So, in the case of your image, you would have 2500*2500 = 6250000 input data samples, which are all vectors of length 15. And then the dimension of the middle layer would be a vector of length 5. And, instead of 2D convolutions that are normally used along the spatial domain of images, in this case it would make sense to use 1D convolution over the spectral domain (since the values of neighbouring wavelengths are also correlated). But I think using only fully-connected layers would also make sense.
As a disclaimer, I haven’t seen CVAEs used in this way before, but like this, you would also get many data samples, which is needed in order for the learning generalise well.
Another option would be indeed what you suggested -- to just generate the samples (patches) using a moving window (maybe with a stride that is the half size of the patch). Even though you wouldn't necessarily get enough data samples for the CVAE to generalise really well on all HSI images, I guess it doesn't matter (if it overfits), since you want to use it on that same image.

Text recognition with tensorfow

I'm new to tensorflow and played around with the hand written numbers MNIST set.
I'd like to do my own project that recognises text instead of numbers but can't find a good tutorial.
Is it the same principle as numbers but instead of 10 layers at the end I have to use 26? Or include upper and lowercase and special characters?
If so I'd have to first crop the words into each character, right? Or is there a way to recognise entire sentences?
I'd like to train three different fonts, so no handwriting, and don't care about upper or lower case.
Later I'd like to use the trained model on photographs. A printed article for example. Does the model work if I align the image, do I have to retrain for a little bit or train it from the start with the new data?
Where do I start? The Keras example is overwhelming.
You're looking for an OCR model, a simple CNN can't detect text from scanned images, you need to segment them first which can be completed based on the language script.
You can start with tesseract. There is a python wrapper named pytesseract.
import pytesseract
from PIL import Image
text = pytesseract.image_to_string(Image.open("temp.jpg"), lang='eng',
config='--psm 10 --oem 3 -c tessedit_char_whitelist=0123456789')
print(text)
For your own model, try CRNN models. https://github.com/qjadud1994/CRNN-Keras

Person recolonization using ML.NET/TensorFlow

I am noob in ML. I have a Person table that have,
-----------------------------------
User
-----------------------------------
UserId | UserName | UserPicturePath
1 | MyName | MyName.jpeg
Now I have tens of millions of persons in my database. I wanna train my model to predict the UserId by giving images(png/jpeg/tiff) in bytes. So, input will be images and the output I am looking is UserId. Right now I am looking for a solution in ML.NET but I am open to switch to TensorFlow.
Well, this is nothing but a mapping problem, particularly an id-to-face mapping problem, and neural nets excell at this more than on anything else.
As you have understood by now, you can do this using tensorflow, pytorch or any library of the same purpose.
But if you want to use tensorflow, read on for a ready code at the end. It is easiest to achieve your task by transfer learning, i.e. by loading some pretrained model, freezing all but last layer and then training the network to produce a latent one-dimensional vector for a given face image. Then you can save this vector into a database and map it into an id.
Then, whenever there is a new image and you want to predict an id for the image, you run your image through the network, get your vector and compute cosine similarity with vectors in your database. If the similarity is above some threshold and it is the highest among other similarities, you have found your id.
There are many ways to go about this. Sure you have to preprocess your data, and augment it at the same time, but if you want some ready code to play with then have a look at this famous happy house tutorial from Andrew NG and his team:
https://github.com/gemaatienza/Deep-Learning-Coursera/blob/master/4.%20Convolutional%20Neural%20Networks/Keras%20-%20Tutorial%20-%20Happy%20House%20v2.ipynb
This should suffice your needs.
Hope it helps!

Tensorflow: pattern training and generation

Imagine I have hundreds of rectangular patterns that look like the following:
_yx_0zzyxx
_0__yz_0y_
x0_0x000yx
_y__x000zx
zyyzx_z_0y
Say the only variables for the different patterns are dimension (width by height in characters) and values at a given cell within the rectangle with possible characters _ y x z 0. So another pattern might look like this:
yx0x_x
xz_x0_
_yy0x_
zyy0__
and another like this:
xx0z00yy_z0x000
zzx_0000_xzzyxx
_yxy0y__yx0yy_z
_xz0z__0_y_xz0z
y__x0_0_y__x000
xz_x0_z0z__0_x0
These simplified examples were randomly generated, but imagine there is a deeper structure and relation between dimensions and layout of characters.
I want to train on this dataset in an unsupervised fashion (no labels) in order to generate similar output. Assuming I have created my dataset appropriately with tf.data.Dataset and categorical identity columns:
what is a good general purpose model for unsupervised training (no labels)?
is there a Tensorflow premade estimator that would represent such a model well enough?
once I've trained the model, what is a general approach to using it for generation of patterns based on what it has learned? I have in mind Google Magenta, which can be used to train on a dataset of musical melodies in order to generate similar ones from a kind of seed/primer melody
I'm not looking for a full implementation (that's the fun part!), just some suggested tutorials and next steps to follow. Thanks!

TensorFlow Object Detection API: evaluation mAP behaves weirdly?

I am training an object detector for my own data using Tensorflow Object Detection API. I am following the (great) tutorial by Dat Tran https://towardsdatascience.com/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9. I am using the provided ssd_mobilenet_v1_coco-model pre-trained model checkpoint as the starting point for the training. I have only one object class.
I exported the trained model, ran it on the evaluation data and looked at the resulted bounding boxes. The trained model worked nicely; I would say that if there was 20 objects, typically there were 13 objects with spot on predicted bounding boxes ("true positives"); 7 where the objects were not detected ("false negatives"); 2 cases where problems occur were two or more objects are close to each other: the bounding boxes get drawn between the objects in some of these cases ("false positives"<-of course, calling these "false positives" etc. is inaccurate, but this is just for me to understand the concept of precision here). There are almost no other "false positives". This seems much better result than what I was hoping to get, and while this kind of visual inspection does not give the actual mAP (which is calculated based on overlap of the predicted and tagged bounding boxes?), I would roughly estimate the mAP as something like 13/(13+2) >80%.
However, when I run the evaluation (eval.py) (on two different evaluation sets), I get the following mAP graph (0.7 smoothed):
mAP during training
This would indicate a huge variation in mAP, and level of about 0.3 at the end of the training, which is way worse than what I would assume based on how well the boundary boxes are drawn when I use the exported output_inference_graph.pb on the evaluation set.
Here is the total loss graph for the training:
total loss during training
My training data consist of 200 images with about 20 labeled objects each (I labeled them using the labelImg app); the images are extracted from a video and the objects are small and kind of blurry. The original image size is 1200x900, so I reduced it to 600x450 for the training data. Evaluation data (which I used both as the evaluation data set for eval.pyand to visually check what the predictions look like) is similar, consists of 50 images with 20 object each, but is still in the original size (the training data is extracted from the first 30 min of the video and evaluation data from the last 30 min).
Question 1: Why is the mAP so low in evaluation when the model appears to work so well? Is it normal for the mAP graph fluctuate so much? I did not touch the default values for how many images the tensorboard uses to draw the graph (I read this question: Tensorflow object detection api validation data size and have some vague idea that there is some default value that can be changed?)
Question 2: Can this be related to different size of the training data and the evaluation data (1200x700 vs 600x450)? If so, should I resize the evaluation data, too? (I did not want to do this as my application uses the original image size, and I want to evaluate how well the model does on that data).
Question 3: Is it a problem to form the training and evaluation data from images where there are multiple tagged objects per image (i.e. surely the evaluation routine compares all the predicted bounding boxes in one image to all the tagged bounding boxes in one image, and not all the predicted boxes in one image to one tagged box which would preduce many "false false positives"?)
(Question 4: it seems to me the model training could have been stopped after around 10000 timesteps were the mAP kind of leveled out, is it now overtrained? it's kind of hard to tell when it fluctuates so much.)
I am a newbie with object detection so I very much appreciate any insight anyone can offer! :)
Question 1: This is the tough one... First, I think you don't understand correctly what mAP is, since your rough calculation is false. Here is, briefly, how it is computed:
For each class of object, using the overlap between the real objects and the detected ones, the detections are tagged as "True positive" or "False positive"; all the real objects with no "True positive" associated to them are labelled "False Negative".
Then, iterate through all your detections (on all images of the dataset) in decreasing order of confidence. Compute the accuracy (TP/(TP+FP)) and recall (TP/(TP+FN)), only counting the detections that you've already seen ( with confidence bigger than the current one) for TP and FP. This gives you a point (acc, recc), that you can put on a precision-recall graph.
Once you've added all possible points to your graph, you compute the area under the curve: this is the Average Precision for this category
if you have multiple categories, the mAP is the standard mean of all APs.
Applying that to your case: in the best case your true positive are the detections with the best confidence. In that case your acc/rec curve will look like a rectangle: you'd have 100% accuracy up to (13/20) recall, and then points with 13/20 recall and <100% accuracy; this gives you mAP=AP(category 1)=13/20=0.65. And this is the best case, you can expect less in practice due to false positives which higher confidence.
Other reasons why yours could be lower:
maybe among the bounding boxes that appear to be good, some are still rejected in the calculations because the overlap between the detection and the real object is not quite big enough. The criterion is that Intersection over Union (IoU) of the two bounding boxes (real one and detection) should be over 0.5. While it seems like a gentle threshold, it's not really; you should probably try and write a script to display the detected bounding boxes with a different color depending on whether they're accepted or not (if not, you'll get both a FP and a FN).
maybe you're only visualizing the first 10 images of the evaluation. If so, change that, for 2 reasons: 1. maybe you're just very lucky on these images, and they're not representative of what follows, just by luck. 2. Actually, more than luck, if these images are the first from the evaluation set, they come right after the end of the training set in your video, so they are probably quite similar to some images in the training set, so they are easier to predict, so they're not representative of your evaluation set.
Question 2: if you have not changed that part in the config file mobilenet_v1_coco-model, all your images (both for training and testing) are rescaled to 300x300 pixels at the start of the network, so your preprocessings don't matter.
Question 3: no it's not a problem at all, all these algorithms were designed to detect multiple objects in images.
Question 4: Given the fluctuations, I'd actually keep training it until you can see improvement or clear overtraining. 10k steps is actually quite small, maybe it's enough because your task is relatively easy, maybe it's not enough and you need to wait ten times that to have significant improvement...