Naming a class that controls another class - oop

I have classes using the strategy pattern (each class has the same single method, but implements it very differently). I have another class which chooses the implementation to use based on runtime-accessible values. I have one final class which basically pulls the others together, calls the necessary methods of the implementing class and formats the output.
What could I name this controller class to make it at least semi-clear what it is for? Before someone asks, it is already a very small class (< 100 lines), not worth splitting - I'm confident that it's not because of multiple responsibilities that I'm having trouble naming it.
I want to say "controller" - but that's already a specific concept in MVC architecture (which our app is using). Any ideas? Is there an accepted name for the pattern I'm describing?

In OOP, classes should generally be named after what they are; class names should be nouns. You already know that.
The problem with class names like XyzManager or XyzController is that although technically they are nouns, they're really verbs disguised as nouns. Thus, such classes are named after what they do, instead of what they are. That makes them not objects, but services, or functions.
Now, naming is hard, and sometimes it can't be avoided with an XyzManager. Often, when it happens, it's because you've not yet realised what concept the class really should encapsulate. Still, you should strive to identify what the class is, instead of what it does, and name it after that.
FWIW, I often use a thesaurus (there are several excellent online services for that) to find a good name.

I would like to name it Service
Example: if you have a TaxStrategyGerman, TaxStrategyFrench that are chosen by TaxStrategyFactory and used by TaxCalculationService.

Related

Is it a bad design to create a small class with two methods solely for inheritance?

I want to create a class with two methods, and no other purpose than so I can create two subclasses which inherit the methods. This class cannot function on its own. Is this a bad programming design or habit?
There are even classes that don't do anything, other than letting other classes derive from it. It doesn't matter whether the superclass can have useful instances themselves. Classes that only exist for other classes to derive from are often called abstract classes; some languages such as C++ also have syntax features to allow the compiler to give errors when you try to create an object from an abstract class. So it can't be THAT bad to have classes like this.
Beyond that, what's "bad practice"? If the setup makes the code easier to understand then it can't be bad.
Of course, if the two classes you intend to derive really don't have anything in common and those two methods are merely "hey, I noticed that 10 lines of code in that class are the same as these 10 lines in the other class", then making this into a common superclass may confuse more than help. Classes should still have some form of relationship. If it's just about sharing some code that randomly happens to show up here and there, standalone functions might be a better choice.
Basically, look at the names of the classes. If your new superclass is named something along the lines of "Some very generic name 'cause I have no idea what it is", then it's probably not "good design". If, on the other hand, you have a proper name for the superclass, and the names of the derived classes are still something that has a "kind of" relationship to the superclass, then it's probably not a bad thing.
Another strong hint for something being "good" is when you start using pointers to the superclass because you don't care whether you're dealing with one or the other subclass.
Its a good habit, it leads to better organization of functions. Another reason is you can just look at the inheritance tree and know that it is related to the two function class. There isn't much harm in it.
There is no inherent good or bad, in general. It depends a lot on the specifics of situation. But, in general, you should always try to follow the principles of object-orientation. For example, whenever you are creating a class, whether abstract or concrete, the class should have both data and behaviour. This rule is very important, it goes all the way to the very foundation of object-orientation. A class without data, is just a bunch of methods (this is procedural programming, not OO). A class without behavior, is a bunch of variables (again procedural, not OO). So, having both data and behavior together is important. But, they should have logical relation to each other, not randomly put together. For example, a method should access data in some way.
Of course, there are deviations from this rule. For example, you may have just a bunch of methods in a static class (like Math class in Java), or just a bunch of constanst in a Interface. But, they are exceptions not rule. They are there, out of necessity, for convenience. They are not true classes in the strict object-oriented sense.
So, always aim toward the right principles, and deviate only when there is no other way to accomplish it, and only as an exception, not as a rule.
The previous point was refering to how to structure a class. For designing relationship among classes, again, the logical path should be followed. Think through each concept that you are dealing with and see if each one makes sense as a class, and then see what is the relationship among these classes. If it looks the you have three concepts that can be organized in inheritance - two classes deriving from a parent, the so be it. If the parent class has two methods, its ok. Even if it has one method, it is still OK. As long as it represents a coherent logical unit.

Naming convention and structure for utility classes and methods

Do you have any input on how to organize and name utility classes?
Whenever I run in to some code-duplication, could be just a couple of code lines, I move them to a utility class.
After a while, I tend to get a lot of small static classes, usually with only one method, which I usualy put in a utility namespace that gets bloated with classes.
Examples:
ParseCommaSeparatedIntegersFromString( string )
CreateCommaSeparatedStringFromIntegers( int[] )
CleanHtmlTags( string )
GetListOfIdsFromCollectionOfX( CollectionX )
CompressByteData( byte[] )
Usually, naming conventions tell you to name your class as a Noun. I often end up with a lot of classes like HtmlHelper, CompressHelper but they aren't very informative. I've also tried being really specific like HtmlTagCleaner, which usualy ends up with one class per utility method.
Have you any ideas on how to name and group these helper methods?
I believe there is a continuum of complexity, therefore corresponding organizations. Examples follow, choose depending of the complexity of your project and your utilities, and adapt to other constraints :
One class (called Helper), with a few methods
One package (called helper), with a few classes (called XXXHelper), each class with a few methods.
Alternatively, the classes may be split in several non-helper packages if they fit.
One project (called helper), with a few packages (called XXX), each package with ...
Alternatively, the packages can be split in several non-helper packages if they fit.
Several helper projects (split by tier, by library in use or otherwise)...
At each grouping level (package, class) :
the common part of the meaning is the name of the grouping name
inner codes don't need that meaning anymore (so their name is shorter, more focused, and doesn't need abbreviations, it uses full names).
For projects, I usually repeat the common meaning in a superpackage name. Although not my prefered choice in theory, I don't see in my IDE (Eclipse) from which project a class is imported, so I need the information repeated. The project is actually only used as :
a shipping unit : some deliverables or products will have the jar, those that don't need it won't),
to express dependencies : for example, a business project have no dependency on web tier helpers ; having expressed that in projects dependencies, we made an improvement in apparent complexity, good for us ; or finding such a dependency, we know something is wrong, and start to investigate... ; also, by reducing the dependencies, we may accelerate compilation and building ....
to categorize the code, to find it faster : only when it's huge, I'm talking about thousands of classes in the project
Please note that all the above applies to dynamic methods as well, not only static ones.
It's actually our good practices for all our code.
Now that I tried to answer your question (although in a broad way), let me add another thought
(I know you didn't ask for that).
Static methods (except those using static class members) work without context, all data have to be passed as parameters. We all know that, in OO code, this is not the preferred way. In theory, we should look for the object most relevant to the method, and move that method on that object. Remember that code sharing doesn't have to be static, it only has to be public (or otherwise visible).
Examples of where to move a static method :
If there is only one parameter, to that parameter.
If there are several parameters, choose between moving the method on :
the parameter that is used most : the one with several fields or methods used, or used by conditionals (ideally, some conditionnals would be removed by subclasses overriding) ...
one existing object that has already good access to several of the parameters.
build a new class for that need
Although this method moving may seem for OO-purist, we find this actually helps us in the long run (and it proves invaluable when we want to subclass it, to alter an algorithm). Eclipse moves a method in less than a minute (with all verifications), and we gain so much more than a minute when we look for some code, or when we don't code again a method that was coded already.
Limitations : some classes can't be extended, usually because they are out of control (JDK, libraries ...). I believe this is the real helper justification, when you need to put a method on a class that you can't change.
Our good practice then is to name the helper with the name of the class to extend, with Helper suffix. (StringHelper, DateHelper). This close matching between the class where we would like the code to be and the Helper helps us find those method in a few seconds, even without knowledge if someone else in our project wrote that method or not.
Helper suffix is a good convention, since it is used in other languages (at least in Java, IIRC rails use it).
The intent of your helper should be transported by the method name, and use the class only as placeholder. For example ParseCommaSeparatedIntegersFromString is a bad name for a couple of reasons:
too long, really
it is redundant, in a statically typed language you can remove FromString suffix since it is deduced from signature
What do you think about:
CSVHelper.parse(String)
CSVHelper.create(int[])
HTMLHelper.clean(String)
...

Is there a best way to handle naming fads?

In the last year and a bit of working on my team's code base I have noticed a steady progression of naming conventions.
For example, there are a lot of classes that are named to express that they are a class that helps you do something.
Here's the ones I've spotted:
MyClassUtil
MyClassFactory
MyClassHelper
MyClassManager
MyClassService
It just seems to me that over time people come up with naming conventions for relatively the same thing and so instead of having everything named in a consistent manner you wind up with a code base that has a bit of every convention. All the new stuff is named based on the latest fad naming convention and so you can pretty much tell the age of a bit of code by what convention was in fashion at the time.
What is the best way to deal with this tendency? Is it really a problem? As these naming fads come into vogue, should one use the latest fad? Should one rename all existing items with the new naming convention? Or should one just accept the variety as something that is inescapable?
They don't seem like fads... all these names hint at the purpose of the class, and those purposes are different. With programming, it's all in the name, and they should be chosen very carefully. The variety doesn't need to be escaped. The names vary because the purposes of the classes vary.
MyClassUtil
-Some utilities for working with MyClass that it didn't come with. Maybe MyClass belongs to a library you're using, but you often use some higher level functions with it and you need somewhere to put them.
MyClassFactory
-Creates instances of MyClass in an abstracted way. This allows you to write code that needs MyClass instances. It can get those new instances from a MyClassFactory. This would allow the Factory to modified in future to serve up different specific implementations of MyClass. Maybe under unit testing, the Factory just serves up dummy/mock MyClasses. This means a class that uses the factory can be tested without needing to change it, just change the factory, and voilà you can isolate the class being tested.
MyClassHelper
-Ok, I may agree, perhaps this can be more specific. It does something to help with MyClass, but what. Maybe this is a bit similar to MyClassUtil. But, probably MyClassUtil is general functions that work with MyClass, whereas the helper is initialized with a specific instance of MyClass and then can do operations on that one instance. You need a new helper for each MyClass you want to help.
MyClassManager
-Maybe this deals with a pool of MyClass instances and stores or orchestrates them. Eg. in a CommunicationsManager, the class would handle wiring together classes that handle talking to a port or connection like ethernet or serial, and a class that deals with the comms protocol being sent over it so it can transport packets, and a class that deals with the messages in those packets.
MyClassService
-A service can do things for you, like given a postcode convert it into a grid-reference. Usually a service can resolve to many specific things. With the postcode example, this class might be have implementations that can talk to different web sites to do the conversion.
All of the names of classes you've given above indicate to me a striking departure from object-oriented principles. There's no way of telling what "MyClassUtil" or "MyClassService" does. It could be anything. Class naming should be specific, and should relay clearly the actual function of the class. None of these do. The best way to deal with this tendency is to brush up on object oriented programming skills and name the classes accordingly.
Now, it could be that these examples point out the function, within the application architecture, that these classes represent, and your use of "MyClass" is simply a placeholder for something more definitive at runtime, in which case, I wouldn't view these as naming fads, but rather as descriptive indicators of the function of the class itself, with a loose hint of the application's underlying architecture.
If this is pervasive, the team needs to spend some time studying OO design: reading the source code to well-respected OO frameworks, books on design patterns or books such as Evans "Domain Driven Design".
"Util" and "Manager" are often symptoms of poor design - "code smells". So is "Helper" outside of special contexts (Rails apps) where it's well entrenched.
"Factory" and "Service" have precise technical meanings, you can check the code to see if it conforms to those design patterns.
The general remedy is to sit down with the team, and have an explicit discussion about what benefits you're expecting from these naming schemes, what makes sense and what doesn't, and then over the next few months apply refactoring techniques to phase out the names you've all decided are code smells.
Naming is important. It shouldn't be taken lightly, nor is it a subjective matter. True, there is often more than one correct answer to a given naming issue. However, there are seldom many answers consistent with previous choices, which is key.
Renaming the names to better ones and refactoring the code so that each class has a clear responsibility, is recommended. To know what kind of names to use, read Tim Ottinger's article about Meaningful Names.
When a class does only one thing, then giving it a descriptive name is usually easy. Words such as "manager" are vague and may indicate that the class is responsible for doing so many unrelated things, that no simple name is able to describe what the class does. If you can know what the class does just by looking at the name of the class, then the class has a good name.
I don't really see how Factory or Service fit in to a particular fad...
Factory is a design pattern and if the class really is a factory then it's a perfectly appropriate name.
If a class is a Windows service what's wrong with calling it service?
There isn't a problem unless you find that performing all the rename refactors is too costly even though you really want to do them.
Why not use a static analysis tool to help enforce a set of style and consistency rule?
If you're in the .NET world Microsoft provides a tool called StyleCop
In the classname examples you give does "MyClass" stand for an actual class name, so that you are really seeing names like "PersonnelRecordUtil" or "GraphNodeFactory"? MyClassFactory is a really bad actual name for a class.

Best practice for naming subclasses

I am often in a situation where I have a concept represented by an interface or class, and then I have a series of subclasses/subinterfaces which extend it.
For example:
A generic "DoiGraphNode"
A "DoiGraphNode" representing a resource
A "DoiGraphNode" representing a Java resource
A "DoiGraphNode" with an associated path, etc., etc.
I can think of three naming conventions, and would appreciate comments on how to choose.
Option 1: Always start with the name of the concept.
Thus: DoiGraphNode, DoiGraphNodeResource, DoiGraphNodeJavaResource, DoiGraphNodeWithPath, etc.
Pro: It is very clear what I am dealing with, it is easy to see all the options I have
Con: Not very natural? Everything looks the same?
Option 2: Put the special stuff in the beginning.
Thus: DoiGraphNode, ResourceDoiGraphNode, JavaResourceDoiGraphNode, PathBaseDoiGraphNode,
etc., etc.
Pro: It is very clear when I see it in the code
Con: Finding it could be difficult, especially if I don't remember the name, lack of visual consistency
Option 3: Put the special stuff and remove some of the redundant text
Thus: DoiGraphNode, ResourceNode, JavaResourceNode, GraphNodeWithPath
Pro: Not that much to write and read
Con: Looks like cr*p, very inconsistent, may conflict with other names
Name them for what they are.
If naming them is hard or ambiguous, it's often a sign that the Class is doing too much (Single Responsibility Principle).
To avoid naming conflicts, choose your namespaces appropriately.
Personnally, I'd use 3
Use whatever you like, it's a subjective thing. The important thing is to make clear what each class represents, and the names should be such that the inheritance relationships make sense. I don't really think it's all that important to encode the relationships in the names, though; that's what documentation is for (and if your names are appropriate for the objects, people should be able to make good guesses as to what inherits from what).
For what it's worth, I usually use option 3, and from my experience looking at other people's code option 2 is probably more prevalent than option 1.
You could find some guidance in a coding standards document, for example there is the IDesign document for C# here.
Personally, I prefer option 2. This is generally the way the .NET Framework names its objects. For instance look at attribute classes. They all end in Attribute (TestMethodAttribute). The same goes for EventHandlers: OnClickEventHandler is a recommended name for an event handler that handles the Click event.
I usually try to follow this in designing my own code and interfaces. Thus an IUnitWriter produces a StringUnitWriter and a DataTableUnitWriter. This way I always know what their base class is and it reads more naturally. Self-documenting code is the end-goal for all agile developers so it seems to work well for me!
I usually name similar to option 1, especially when the classes will be used polymophically.
My reasoning is that the most important bit of information is listed first.
(I.e. the fact that the subclass is basically what the ancestor is,
with (usually) extensions 'added').
I like this option also because when sorting lists of class names,
the related classes will be listed together.
I.e. I usually name the translation unit (file name) the same as
the class name so related class files will naturally be listed together.
Similarly this is useful with incremental search.
Although I tended to use option 2 earlier in my programming career, I avoid it now because as you say it is 'inconsistant' and do not seem very orthogonal.
I often use option 3 when the subclass provides substantial extension or specification, or if the names would be rather long.
For example, my file system name classes are derived from String
but they greatly extend the String class and have a significantly different
use/meaning:
Directory_entry_name derived from String adds extensive functionality.
File_name derived from Directory_entry_name has rather specialized functions.
Directory_name derived from Directory_entry_name also has rather specialized functions.
Also along with option 1, I usually use an unqualified name for an interface class.
For example I might have a class interence chain:
Text (an interface)
Text_abstract (abstract (base) generalization class)
Text_ASCII (concrete class specific for ASCII coding)
Text_unicode (concrete class specific for unicode coding)
I rather like that the interface and the abstract base class automatically appear first in the sorted list.
Option three more logically follows from the concept of inheritance. Since you're specializing the interface or class, the name should show that it's no longer using the base implementation (if one exists).
There are a multitude of tools to see what a class inherits from, so a concise name indicating the real function of the class will go farther than trying to pack too much type information into the name.

Why should you prevent a class from being subclassed?

What can be reasons to prevent a class from being inherited? (e.g. using sealed on a c# class)
Right now I can't think of any.
Because writing classes to be substitutably extended is damn hard and requires you to make accurate predictions of how future users will want to extend what you've written.
Sealing your class forces them to use composition, which is much more robust.
How about if you are not sure about the interface yet and don't want any other code depending on the present interface? [That's off the top of my head, but I'd be interested in other reasons as well!]
Edit:
A bit of googling gave the following:
http://codebetter.com/blogs/patricksmacchia/archive/2008/01/05/rambling-on-the-sealed-keyword.aspx
Quoting:
There are three reasons why a sealed class is better than an unsealed class:
Versioning: When a class is originally sealed, it can change to unsealed in the future without breaking compatibility. (…)
Performance: (…) if the JIT compiler sees a call to a virtual method using a sealed types, the JIT compiler can produce more efficient code by calling the method non-virtually.(…)
Security and Predictability: A class must protect its own state and not allow itself to ever become corrupted. When a class is unsealed, a derived class can access and manipulate the base class’s state if any data fields or methods that internally manipulate fields are accessible and not private.(…)
I want to give you this message from "Code Complete":
Inheritance - subclasses - tends to
work against the primary technical
imperative you have as a programmer,
which is to manage complexity.For the sake of controlling complexity, you should maintain a heavy bias against inheritance.
The only legitimate use of inheritance is to define a particular case of a base class like, for example, when inherit from Shape to derive Circle. To check this look at the relation in opposite direction: is a Shape a generalization of Circle? If the answer is yes then it is ok to use inheritance.
So if you have a class for which there can not be any particular cases that specialize its behavior it should be sealed.
Also due to LSP (Liskov Substitution Principle) one can use derived class where base class is expected and this is actually imposes the greatest impact from use of inheritance: code using base class may be given an inherited class and it still has to work as expected. In order to protect external code when there is no obvious need for subclasses you seal the class and its clients can rely that its behavior will not be changed. Otherwise external code needs to be explicitly designed to expect possible changes in behavior in subclasses.
A more concrete example would be Singleton pattern. You need to seal singleton to ensure one can not break the "singletonness".
This may not apply to your code, but a lot of classes within the .NET framework are sealed purposely so that no one tries to create a sub-class.
There are certain situations where the internals are complex and require certain things to be controlled very specifically so the designer decided no one should inherit the class so that no one accidentally breaks functionality by using something in the wrong way.
#jjnguy
Another user may want to re-use your code by sub-classing your class. I don't see a reason to stop this.
If they want to use the functionality of my class they can achieve that with containment, and they will have much less brittle code as a result.
Composition seems to be often overlooked; all too often people want to jump on the inheritance bandwagon. They should not! Substitutability is difficult. Default to composition; you'll thank me in the long run.
I am in agreement with jjnguy... I think the reasons to seal a class are few and far between. Quite the contrary, I have been in the situation more than once where I want to extend a class, but couldn't because it was sealed.
As a perfect example, I was recently creating a small package (Java, not C#, but same principles) to wrap functionality around the memcached tool. I wanted an interface so in tests I could mock away the memcached client API I was using, and also so we could switch clients if the need arose (there are 2 clients listed on the memcached homepage). Additionally, I wanted to have the opportunity to replace the functionality altogether if the need or desire arose (such as if the memcached servers are down for some reason, we could potentially hot swap with a local cache implementation instead).
I exposed a minimal interface to interact with the client API, and it would have been awesome to extend the client API class and then just add an implements clause with my new interface. The methods that I had in the interface that matched the actual interface would then need no further details and so I wouldn't have to explicitly implement them. However, the class was sealed, so I had to instead proxy calls to an internal reference to this class. The result: more work and a lot more code for no real good reason.
That said, I think there are potential times when you might want to make a class sealed... and the best thing I can think of is an API that you will invoke directly, but allow clients to implement. For example, a game where you can program against the game... if your classes were not sealed, then the players who are adding features could potentially exploit the API to their advantage. This is a very narrow case though, and I think any time you have full control over the codebase, there really is little if any reason to make a class sealed.
This is one reason I really like the Ruby programming language... even the core classes are open, not just to extend but to ADD AND CHANGE functionality dynamically, TO THE CLASS ITSELF! It's called monkeypatching and can be a nightmare if abused, but it's damn fun to play with!
From an object-oriented perspective, sealing a class clearly documents the author's intent without the need for comments. When I seal a class I am trying to say that this class was designed to encapsulate some specific piece of knowledge or some specific service. It was not meant to be enhanced or subclassed further.
This goes well with the Template Method design pattern. I have an interface that says "I perform this service." I then have a class that implements that interface. But, what if performing that service relies on context that the base class doesn't know about (and shouldn't know about)? What happens is that the base class provides virtual methods, which are either protected or private, and these virtual methods are the hooks for subclasses to provide the piece of information or action that the base class does not know and cannot know. Meanwhile, the base class can contain code that is common for all the child classes. These subclasses would be sealed because they are meant to accomplish that one and only one concrete implementation of the service.
Can you make the argument that these subclasses should be further subclassed to enhance them? I would say no because if that subclass couldn't get the job done in the first place then it should never have derived from the base class. If you don't like it then you have the original interface, go write your own implementation class.
Sealing these subclasses also discourages deep levels of inheritence, which works well for GUI frameworks but works poorly for business logic layers.
Because you always want to be handed a reference to the class and not to a derived one for various reasons:
i. invariants that you have in some other part of your code
ii. security
etc
Also, because it's a safe bet with regards to backward compatibility - you'll never be able to close that class for inheritance if it's release unsealed.
Or maybe you didn't have enough time to test the interface that the class exposes to be sure that you can allow others to inherit from it.
Or maybe there's no point (that you see now) in having a subclass.
Or you don't want bug reports when people try to subclass and don't manage to get all the nitty-gritty details - cut support costs.
Sometimes your class interface just isn't meant to be inheirited. The public interface just isn't virtual and while someone could override the functionality that's in place it would just be wrong. Yes in general they shouldn't override the public interface, but you can insure that they don't by making the class non-inheritable.
The example I can think of right now are customized contained classes with deep clones in .Net. If you inherit from them you lose the deep clone ability.[I'm kind of fuzzy on this example, it's been a while since I worked with IClonable] If you have a true singelton class, you probably don't want inherited forms of it around, and a data persistence layer is not normally place you want a lot of inheritance.
Not everything that's important in a class is asserted easily in code. There can be semantics and relationships present that are easily broken by inheriting and overriding methods. Overriding one method at a time is an easy way to do this. You design a class/object as a single meaningful entity and then someone comes along and thinks if a method or two were 'better' it would do no harm. That may or may not be true. Maybe you can correctly separate all methods between private and not private or virtual and not virtual but that still may not be enough. Demanding inheritance of all classes also puts a huge additional burden on the original developer to foresee all the ways an inheriting class could screw things up.
I don't know of a perfect solution. I'm sympathetic to preventing inheritance but that's also a problem because it hinders unit testing.
I exposed a minimal interface to interact with the client API, and it would have been awesome to extend the client API class and then just add an implements clause with my new interface. The methods that I had in the interface that matched the actual interface would then need no further details and so I wouldn't have to explicitly implement them. However, the class was sealed, so I had to instead proxy calls to an internal reference to this class. The result: more work and a lot more code for no real good reason.
Well, there is a reason: your code is now somewhat insulated from changes to the memcached interface.
Performance: (…) if the JIT compiler sees a call to a virtual method using a sealed types, the JIT compiler can produce more efficient code by calling the method non-virtually.(…)
That's a great reason indeed. Thus, for performance-critical classes, sealed and friends make sense.
All the other reasons I've seen mentioned so far boil down to "nobody touches my class!". If you're worried someone might misunderstand its internals, you did a poor job documenting it. You can't possibly know that there's nothing useful to add to your class, or that you already know every imaginable use case for it. Even if you're right and the other developer shouldn't have used your class to solve their problem, using a keyword isn't a great way of preventing such a mistake. Documentation is. If they ignore the documentation, their loss.
Most of answers (when abstracted) state that sealed/finalized classes are tool to protect other programmers against potential mistakes. There is a blurry line between meaningful protection and pointless restriction. But as long as programmer is the one who is expected to understand the program, I see no hardly any reasons to restrict him from reusing parts of a class. Most of you talk about classes. But it's all about objects!
In his first post, DrPizza claims that designing inheritable class means anticipating possible extensions. Do I get it right that you think that class should be inheritable only if it's likely to be extended well? Looks as if you were used to design software from the most abstract classes. Allow me a brief explanation of how do I think when designing:
Starting from the very concrete objects, I find characteristics and [thus] functionality that they have in common and I abstract it to superclass of those particular objects. This is a way to reduce code duplicity.
Unless developing some specific product such as a framework, I should care about my code, not others (virtual) code. The fact that others might find it useful to reuse my code is a nice bonus, not my primary goal. If they decide to do so, it's their responsibility to ensure validity of extensions. This applies team-wide. Up-front design is crucial to productivity.
Getting back to my idea: Your objects should primarily serve your purposes, not some possible shoulda/woulda/coulda functionality of their subtypes. Your goal is to solve given problem. Object oriented languages uses fact that many problems (or more likely their subproblems) are similar and therefore existing code can be used to accelerate further development.
Sealing a class forces people who could possibly take advantage of existing code WITHOUT ACTUALLY MODIFYING YOUR PRODUCT to reinvent the wheel. (This is a crucial idea of my thesis: Inheriting a class doesn't modify it! Which seems quite pedestrian and obvious, but it's being commonly ignored).
People are often scared that their "open" classes will be twisted to something that can not substitute its ascendants. So what? Why should you care? No tool can prevent bad programmer from creating bad software!
I'm not trying to denote inheritable classes as the ultimately correct way of designing, consider this more like an explanation of my inclination to inheritable classes. That's the beauty of programming - virtually infinite set of correct solutions, each with its own cons and pros. Your comments and arguments are welcome.
And finally, my answer to the original question: I'd finalize a class to let others know that I consider the class a leaf of the hierarchical class tree and I see absolutely no possibility that it could become a parent node. (And if anyone thinks that it actually could, then either I was wrong or they don't get me).