Incremental extraction from DB2 - sql

What would be the most efficient way to select only rows from DB2 table that are inserted/updated since the last select (or some specified time)? There is no field in the table that would allow us to do this easily.
We are extracting data from the table for purposes of reporting, and now we have to extract the whole table every time, which is causing big performance issues.
I found example on how to select only rows changed in last day:
SELECT * FROM ORDERS
WHERE ROW CHANGE TIMESTAMP FOR ORDERS >
CURRENT TIMESTAMP - 24 HOURS;
But, I am not sure how efficient this would be, since the table is enormous.
Is there some other way to select only rows that are changed, that might be more efficient that this?
I also found solution called ParStream. This seems as something that can speed up demanding queries on the data, but I was unable to find any useful documentation about it.

I propose these options:
You can use Change Data Capture, and this will replay automatically the modifications to another data source.
Normally, a select statement does not assure the order of the rows. That means that you cannot use a select without a time reference in order to retrieve the most recent. Thus, you have to have a time column in order to retrieve the most recent. You can keep track of the most recent row in a global variable, and the next time retrieve the rows with a time bigger than that variable. If you want to increase performance, you can put the table in append mode, and in this way the new rows will be physically together. Keeping an index on this time column could be expensive to maintain, but it will speed (no table scan) when you need to extract the rows.

If your server is DB2 for i, use database journaling. You can extract after images of inserted records by time period or journal entry number from the journal receiver(s). The data entries can then be copied to your target file.

Related

How many records were counted in specific day

Is it possible to check in DB2 how many records were counted in specific table in specific day in past
I have a table with name 'XYZ' and I would like to check row count for specific day e.g. for 10.09.2020, for 05.09.2020 and for 01.09.2020
In ordinary SQL, without special provisions, no, you can´t!
Depending on your usage scenario, there are several ways to achieve this function. Here are three that I can think of:
If you table has a timestamp field or you can add one and you can guarantee there will be no rows deleted: You can just count the rows where the timestamp is smaller then your desired date. Cheap, performance wise, but deletes may make this impossible.
You could set up a procedure that runs daily and counts your rows to write them in a different table. This van also be rather cheap from a performance point of view, but you will be limited to the specific "snapshot" times you configured beforehand and you may have conditions where the count procedure did not run an therefore data is missing.
You could create an audit-table and a trigger on the table you are interested in to log every insert and delete operation on the table with a timestamp. This is the most performance heavy solution, but the only one that will give you always a full picture of the row count at any given time.

Keeping track of mutated rows in BigQuery?

I have a large table whose rows get updated/inserted/merged periodically from a few different queries. I need a scheduled process to run (via API) to periodically check for which rows in that table were updated since the last check. So here are my issues...
When I run the merge query, I don't see a way for it to return which records were updated... otherwise, I could be copying those updated rows to a special updated_records table.
There are no triggers so I can't keep track of mutations that way.
I could add a last_updated timestamp column to keep track that way, but then repeatedly querying the entire table all day for that would be a huge amount of data billed (expensive).
I'm wondering if I'm overlooking something obvious or if maybe there's some kind of special BQ metadata that could help?
The reason I'm attempting this is that I'm wanting to extract and synchronize a smaller subset of this table into my PostgreSQL instance because the latency for querying BQ is just too much for smaller queries.
Any ideas? Thanks!
One way is to periodically save intermediate state of the table using the time travel feature. Or store only the diffs. I just want to leave this option here:
FOR SYSTEM_TIME AS OF references the historical versions of the table definition and rows that were current at timestamp_expression.
The value of timestamp_expression has to be within last 7 days.
The following query returns a historical version of the table from one hour ago.
SELECT * FROM table
FOR SYSTEM_TIME AS OF TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 1 HOUR);
The following query returns a historical version of the table at an absolute point in time.
SELECT * FROM table
FOR SYSTEM_TIME AS OF '2017-01-01 10:00:00-07:00';
An approach would be to have 3 tables:
one basetable in "append only" mode, only inserts are added, and updates as full row, in this table would be every record like a versioning system.
a table to hold deletes (or this can be incorporated as a soft delete if there is a special column kept in the first table)
a livetable where you hold the current data (in this table you would do your MERGE statements most probably from the first base table.
If you choose partitioning and clustering, you could end up leverage a lot for long time storage discounted price and scan less data by using partitioning and clustering.
If the table is large but the amount of data updated per day is modest then you can partition and/or cluster the table on the last_updated_date column. There are some edge cases, like the first today's check should filter for last_updated_date being either today or yesterday.
Depending of how modest this amount of data updated throughout a day is, even repeatedly querying the entire table all day could be affordable because BQ engine will scan one daily partition only.
P.S.
Detailed explanation
I could add a last_updated timestamp column to keep track that way
I inferred from that the last_updated column is not there yet (so the check-for-updates statement cannot currently distinguish between updated rows and non-updated ones) but you can modify the table UPDATE statements so that this column will be added to the newly modified rows.
Therefore I assumed you can modify the updates further to set the additional last_updated_date column which will contain the date portion of the timestamp stored in the last_updated column.
but then repeatedly querying the entire table all day
From here I inferred there are multiple checks throughout the day.
but the data being updated can be for any time frame
Sure, but as soon as a row is updated, no matter how old this row is, it will acquire two new columns last_updated and last_updated_date - unless both columns have already been added by the previous update in which cases the two columns will be updated rather than added. If there are several updates to the same row between the update checks, then the latest update will still make the row to be discoverable by the checks that use the logic described below.
The check-for-update statement will (conceptually, not literally):
filter rows to ensure last_updated_date=today AND last_updated>last_checked. The datetime of the previous update check will be stored in last_checked and where this piece of data is held (table, durable config) is implementation dependent.
discover if the current check is the first today's check. If so then additionally search for last_updated_date=yesterday AND last_updated>last_checked.
Note 1If the table is partitioned and/or clustered on the last_updated_date column, then the above update checks will not cause table scan. And subject to ‘modest’ assumption made at the very beginning of my answer, the checks will satisfy your 3rd bullet point.
Note 2The downside of this approach is that the checks for updates will not find rows that had been updated before the table UPDATE statements were modified to include the two extra columns. (Such rows will be in the__NULL__ partition with rows that never were updated.) But I assume until the changes to the UPDATE statements are made it will be impossible to distinguish between updated rows and non-updated ones anyway.
Note 3 This is an explanatory concept. In the real implementation you might need one extra column instead of two. And you will need to check which approach works better: partitioning or clustering (with partitioning on a fake column) or both.
The detailed explanation of the initial (e.g. above P.S.) answer ends here.
Note 4
clustering only helps performance
From the point of view of table scan avoidance and achieving a reduction in the data usage/costs, clustering alone (with fake partitioning) could be as potent as partitioning.
Note 5
In the comment you mentioned there is already some partitioning in place. I’d suggest to examine if the existing partitioning is indispensable, can it be replaced with clustering.
Some good ideas posted here. Thanks to those who responded. Essentially, there are multiple approaches to tackling this.
But anyway, here's how I solved my particular problem...
Suppose the data needs to ultimately end up in a table called MyData. I created two additional tables, MyDataStaging and MyDataUpdate. These two tables have an identical structure to MyData with the exception of MyDataStaging has an additional Timestamp field, "batch_timestamp". This timestamp allows me to determine which rows are the latest versions in case I end up with multiple versions before the table is processed.
DatFlow pushes data directly to MyDataStaging, along with a Timestamp ("batch_timestamp") value indicating when the process ran.
A scheduled process then upserts/merges MyDataStaging to MyDataUpdate (MyDataUpdate will now always contain only a unique list of rows/values that have been changed). Then the process upserts/merges from MyDataUpdate into MyData as well as being exported & downloaded to be loaded into PostgreSQL. Then staging/update tables are emptied appropriately.
Now I'm not constantly querying the massive table to check for changes.
NOTE: When merging to the main big table, I filter the update on unique dates from within the source table to limit the bytes processed.

SQL server data backup/warehouse

I've been asked to do a snapshots of certain tables from the database, so in the future we can have a clear view of the situation for any given day in the past. lets say that one of such tables looks like this:
GKEY Time_in Time_out Category Commodity
1001 2014-05-01 10:50 NULL EXPORT Apples
1002 2014-05-02 11:23 2014-05-20 12:05 IMPORT Bananas
1003 2014-05-05 11:23 NULL STORAGE Null
The simples way to do a snapshot would be creating copy of the table with another column SNAPSHOT_TAKEN (Datetime) and populate it with an INSERT statement
INSERT INTO UNITS_snapshot (SNAPSHOT_TAKEN, GKEY,Time_in, Time_out, Category, Commodity)
SELECT getdate() as SNAPSHOT_TAKEN, * FROM UNITS
OK, it works fine, but it would make the destination table quite big pretty soon, especially if I'd like to run this query often. Better solution would be checking for changes between current live table and the latest snapshot and write them down, omitting everything that hasn't been changed.
Is there a simply way to write such query?
EDIT: Possible solution for the "Forward delta" (assuming no deletes from original table)
INSERT INTO UNITS_snapshot
SELECT getdate() as SNAP_DATE,
r.* -- Here goes all data from from the original table
CASE when b.gkey is null then 'I' else 'U' END AS change_type
FROM UNITS r left outer join UNITS_snapshot b
WHERE (r.time_in <>b.time_in or r.time_out<>b.time_out or r.category<>b.category or r.commodity<>b.commodity or b.gkey is null)
and (b.snap_date =
(SELECT max (b.snap_date) from UNITS_snapshot b right outer join UNITS r
on r.gkey=b.gkey) or b.snap_date is null)
Assumptions: no value from original table is deleted. Probably also every field in WHERE should be COALESCE (xxx,'') to avoid comparing null values with set ones.
Both Dan Bracuk and ITroubs have made very good comments.
Solution 1 - Daily snapshop
The first solution you proposed is very simple. You can build the snapshot with a simple query and you can also consult it and rebuild any day's snapshot with a very simple query, by just filtering on the SNAPSHOT_TAKEN column.
If you have just some thousands of records, I'd go with this one, without worrying too much about its growing size.
Solution 2 - Daily snapshop with rolling history
This is basically the same as solution 1, but you keep only some of the snapshots over time... to avoid having the snapshot DB growing indefinitely over time.
The simplest approach is just to save the snapshots of the last N days... maybe a month or two of data. A more sophisticated approach is to keep snapshot with a density that depends on age... so, for example, you could have every day of the last month, plus every sunday of the last 3 months, plus every end-of-month of the last year, etc...
This solution requires you develop a procedure to handle deletion of the snapshots that are not required any more. It's not as simple as using getdate() within a query. But you obtain a good balance between space and historic information. You just need to balance out a good snapshot retainment strategy to suit your needs.
Solution 3 - Forward row delta
Building any type of delta is a much more complex procedure.
A forward delta is built by storing the initial snapshot (as if all rows had been inserted on that day) and then, on the following snapshots, just storing information about the difference between snapshot(N) and snapshot(N-1). This is done by analyzing each row and just storing the data if the row is new or updated or deleted. If the main table does not change much over time, you can save quite a lot of space, as no info is stored for unchanged rows.
Obviously, to handle deltas, you now need 2 extra columns, not just one:
delta id (you snapshot_taken is good, if you only want 1 delta per
day)
row change type (could be D=deleted, I=inserted, U=updated... or
something similar)
The main complexity derives from the necessity to identify rows (usually by primary key) so as to calculate if between 2 snapshots any individual row has been inserted, updated, deleted... or none of the above.
The other complexity comes from reading the snapshot DB and building the latest (or any other) snapshot. This is necessary because, having only row differences in the table, you cannot simply select a day's snapshot by filtering on snapshot_taken.
This is not easy in SQL. For each row you must take into account just the final version... the one with MAX snapshot_taken that is <= the date of the snapshot you want to build. If it is an insert or update, then keep the data for that row, else (if it is a delete) then ignore it.
To build a delta of snapshot(N), you must first build the latest snapshot (N-1) from the snapshot DB. Then you must compare the two snapshots by primary key or row identity and calculate the change type (I/U/D) and insert the changes in the snapshot DB.
Beware that you cannot delete old snapshot data without consolidating it first. That is because all snapshots are calculated from the oldest initial one and all the subsequent difference data. If you want to remove a year's of old snapshots, you'll have to consolidate the old initial snapshot and all the year's variations in a new initial snapshot.
Solution 4 - Backward row delta
This is very similar to solution 3, but a bit more complex.
A backward delta is built by storing the final snapshot and then, on the following snapshots, just storing information about the difference between snapshot(N-1) and snapshot(N).
The advantage is that the latest snapshot is always readily available through a simple select on the snapshot DB. You only need to merge the difference data when you want to retrieve an older snapshot. Compare this to the forward delta, where you always need to rebuild the snapshot from the difference data unless you are actually interested in the very first snapshot.
Another advantage (compared to solution 3) is that you can remove older snapshots by just deleting the difference data older than a particular snapshot. You can do this easily because snapshots are calculated from the final snapshot and not from the initial one.
The disadvantage is in the obscure logic. Difference data is calculated backwards. Values must be stored on the (U)pdate and (D)elete variations, but are unnecessary on the I variations. Going backwards, rows must be ignored if the first variation you find is an (I)nsert. Doable, but a bit trickier.
Solution 5 - Forward and backward column delta
If the main table has many columns, or many long text or varchar columns, and only a bunch of these are updated, then it could make sense to store only column variations instead of row variations.
This is done by using a table with this structure:
delta id (you snapshot_taken is good, if you only want 1 delta per
day)
change type (could be D=deleted, I=inserted, U=updated... or
something similar)
column name
value
The difference can be calculated forward or backward, as per row deltas.
I've seen this done, but I really advise against it. There are just too many disadvantages and added complexity.
Value is a text or varchar, and there are typecasting issues to handle if you have numeric, boolean or date/time values... and, if you have a lot of these, it could very well be you won't be saving as much space as you think you are.
Rebuilding any snapshot is hell. Altogether... any operation on this type of table really requires a lot of knowledge of the main table's structure.

How can I improve performance of average method in SQL?

I'm having some performance problems where a SQL query calculating the average of a column is progressively getting slower as the number of records grows. Is there an index type that I can add to the column that will allow for faster average calculations?
The DB in question is PostgreSQL and I'm aware that particular index type might not be available, but I'm also interested in the theoretical answer, weather this is even possible without some sort of caching solution.
To be more specific, the data in question is essentially a log with this sort of definition:
table log {
int duration
date time
string event
}
I'm doing queries like
SELECT average(duration) FROM log WHERE event = 'finished'; # gets average time to completion
SELECT average(duration) FROM log WHERE event = 'finished' and date > $yesterday; # average today
The second one is always fairly fast since it has a more restrictive WHERE clause, but the total average duration one is the type of query that is causing the problem. I understand that I could cache the values, using OLAP or something, my question is weather there is a way I can do this entirely by DB side optimisations such as indices.
The performance of calculating an average will always get slower the more records you have, at it always has to use values from every record in the result.
An index can still help, if the index contains less data than the table itself. Creating an index for the field that you want the average for generally isn't helpful as you don't want to do a lookup, you just want to get to all the data as efficiently as possible. Typically you would add the field as an output field in an index that is already used by the query.
Depends what you are doing? If you aren't filtering the data then beyond having the clustered index in order, how else is the database to calculate an average of the column?
There are systems which perform online analytical processing (OLAP) which will do things like keeping running sums and averages down the information you wish to examine. It all depends one what you are doing and your definition of "slow".
If you have a web based program for instance, perhaps you can generate an average once a minute and then cache it, serving the cached value out to users over and over again.
Speeding up aggregates is usually done by keeping additional tables.
Assuming sizeable table detail(id, dimA, dimB, dimC, value) if you would like to make the performance of AVG (or other aggregate functions) be nearly constant time regardless of number of records you could introduce a new table
dimAavg(dimA, avgValue)
The size of this table will depend only on the number of distinct values of dimA (furthermore this table could make sense in your design as it can hold the domain of the values available for dimA in detail (and other attributes related to the domain values; you might/should already have such table)
This table is only helpful if you will anlayze by dimA only, once you'll need AVG(value) according to dimA and dimB it becomes useless. So, you need to know by which attributes you will want to do fast analysis on. The number of rows required for keeping aggregates on multiple attributes is n(dimA) x n(dimB) x n(dimC) x ... which may or may not grow pretty quickly.
Maintaining this table increases the costs of updates (incl. inserts and deletes), but there are further optimizations that you can employ...
For example let us assume that system predominantly does inserts and only occasionally updates and deletes.
Lets further assume that you want to analyze by dimA only and that ids are increasing. Then having structure such as
dimA_agg(dimA, Total, Count, LastID)
can help without a big impact on the system.
This is because you could have triggers that would not fire on every insert, but lets say on ever 100 inserts.
This way you can still get accurate aggregates from this table and the details table with
SELECT a.dimA, (SUM(d.value)+MAX(a.Total))/(COUNT(d.id)+MAX(a.Count)) as avgDimA
FROM details d INNER JOIN
dimA_agg a ON a.dimA = d.dimA AND d.id > a.LastID
GROUP BY a.dimA
The above query with proper indexes would get one row from dimA_agg and only less then 100 rows from detail - this would perform in near constant time (~logfanoutn) and would not require update to dimA_agg for every insert (reducing update penalties).
The value of 100 was just given as an example, you should find optimal value yourself (or even keep it variable, though triggers only will not be enough in that case).
Maintaining deletes and updates must fire on each operation but you can still inspect if the id of the record to be deleted or updated is in the stats already or not to avoid the unnecessary updates (will save some I/O).
Note: The analysis is done for the domain with discreet attributes; when dealing with time series the situation gets more complicated - you have to decide the granularity of the domain in which you want to keep the summary.
EDIT
There are also materialized views, 2, 3
Just a guess, but indexes won't help much since average must read all the record (in any order), indexes are usefull the find subsets of rows, ubt if you have to iterate on all rows with no special ordering indexes are not helping...
This might not be what you're looking for, but if your table has some way to order the data (e.g. by date), then you can just do incremental computations and store the results.
For example, if your data has a date column, you could compute the average for records 1 - Date1 then store the average for that batch along with Date1 and the #records you averaged. The next time you compute, you restrict your query to results Date1..Date2, and add the # of records, and update the last date queried. You have all the information you need to compute the new average.
When doing this, it would obviously be helpful to have an index on the date, or whatever column(s) you are using for the ordering.

SQL Server compare table entries for update

I have a trade table with several million rows. Each row represents the version of a trade. If I'm given a possibly new trade I compare it to the latest version in the trade table. If it has changed I add a new version, otherwise I do nothing. In order to compare the 2 trades I read the version from the trade table into my application.
This doesn't work well when I'm given 10s of thousands of possibly new trades. Even batching reads to read in a 1000 trades at once and compare them the whole process can take several minutes. All the time is spent in the DB.
I'm trying to find a way to compare the possibly new trades to the ones in the trade table without so much I/O. What I've come up with so far is adding a hash column to each row in the trade table. The hash is of all the trade fields. Then when I'm given possibly new trades I compute their hash, put the values into a temporary table, then find ones that are different. This feels very hacky. Is there a better way of doing it?
Thanks
--
Some more info
SQL Server 2008
Trade(rowid, tradeid, type, trader, volume, etc..) -- rowid is unique, tradeid will be duplicated for difference versions of the same trade
The table has about 30 columns and is not normalised, so depending on type some columns can be null. Someone posts thousands of trades to a java servlet which is then supposed to add a new row for any trade that has changed. Unfortunately in order to do this the java servlet has to read in every one of the thousands of trades and compare them.
The newest version of a particuluar trade is just the version with the highest rowid.
If you are using SQL Server 2008, you might want to use the MERGE statement.
Create an index on the columns that uniquely identify each trade.
Hash not a bad solution. It will help if you post some more info about the table structure.
Standard way to do it is to simply run UPDATE statement, WHERE clause will include joins on key fields: WHERE table.PRODUCT_ID = NEWTRADE.PRODUCT_ID; also, check the value fields: WHERE table.TRADE_AMOUNT <> newtrade.BIDAMOUONT; if you index the table by PRODUCT_ID - it will run milliseconds.
You may insert your 10s of thousands new trades in a table first and then run UPDATE to join main table with new trades. again, make sure you have indexes the tables properly.
Given what you have told us, it sounds like you are in part looking for a way to determine if the row changed. This is a good candidate for a rowversion column (previously known as a timestamp). This column will change whenever any value in the row changes. Thus, you could compare the last trade's rowversion with the current rowversion to determine if they were different.
It might be possible to do this in a single insert statement if you show us some additional details about the table schema and specifically how "last" is determined and how you match rows in the two tables (i.e. the matching key between the two tables).