How can we have an Association that is not an Aggregation? - oop

Aggregation is defined as a special case of association. However, any association that is not implemented as a field (like having a relationship through method parameters) are being described as "use" relationship.
So, is it possible to have an association that is not aggregation or composition? If yes, I need a code example for such a case, please.

In fact, I'd say that most cases of associations in models are neither aggregations nor compositions (both are forms of part-whole relationship types). For instance, the association between the classes Publisherand Book for assigning the books published by a publisher to this publisher is neither an aggregation nor a composition because the books published by a publisher are not parts or components of this publisher.
For implementing this bidirectional association, we use the two mutually inverse reference properties Publisher::publishedBooks and Book::publisher, as shown in the following class rectangles:
Notice that the multi-valued reference property Publisher::publishedBooks is normally implemented by a list-valued property in Java.
I have explained how to use associations and reference properties in design models in my tutorial Managing Unidirectional Associations in a JavaScript Frontend Web App.

Shared aggregation (empty diamond) is not defined strictly in the UML standard. So, it is not easy to find a situation, where you can not use it.
But it is explicitely forbidden to use it for both sides of association. So, if you have relation many to many, you have to show it on class diagram as many to many association with none aggregation. Of course, you can show it as TWO shared association, but it is not our target, is it? :-)
As for code, if people visit many courses and courses are visited by many people, make a list "courses" for Person class and a list "visitors" for Course class.
Of course, on the other side, you always can use none instead of shared for any shared association, it is at your wish and up to rules of your place of work. But I don't know these rules, sorry :-). But surely, nobody will make you to use aggregation for 1 to 1 association.

Related

What's wrong with composition and aggregation?

It's pretty strange to see all those answers about composition/aggregation/association.
Who/What is the source of those notions?
geeksforgeeks
wikipedia?!?!
stackexchange
and finally my lovely stackoverflow (at least I glad that answers were not marked as verified)
What is the difference between association, aggregation and composition?
What is the difference between aggregation, composition and dependency?
There is a great book "Design Patterns"
GoF
It describes two most common techniques for reusing functionality in object-oriented systems:
1) class inheritance (is-a)
2) object composition (has-a)
"Object composition is an alternative to class inheritance. Here, new functionality is obtained by assembling or composing objects to get more complex functionality."
"Composition" is a very descriptive term to express relationship between objects unlike "Association".
Why all those sources above use term "Composition" in the wrong way?!
Let's go further.
Objects could be composed in two ways:
1) Aggregation
2) Acquaintance
"Consider the distinction between object aggregation and acquaintance and how differently they manifest themselves at compile- and run-times. Aggregation implies that one object owns or is responsible for another object. Generally we speak of an object having or being part of another object. Aggregation implies that an aggregate object and its owner have identical lifetimes."
aggregate object and its owner have identical lifetimes!!!
"Acquaintance implies that an object merely knows of another object. Sometimes acquaintance is called "association" or the "using" relationship. Acquainted objects may request operations of each other, but they aren't responsible for each other. Acquaintance is a weaker relationship than aggregation and suggests much looser coupling between objects."
"It's easy to confuse aggregation and acquaintance, because they are often implemented in the same way. In Smalltalk, all variables are references to other objects. There's no distinction in the programming language between aggregation and acquaintance. In C++, aggregation can be implemented by defining member variables that are real instances, but it's more common to define them as pointers or references to instances. Acquaintance is implemented with pointers and references as well."
Guys, please, help me to figure out what's going on here...
Yes, there is lot of confusion around for these two terms Composition and Aggregation [There is More to add Shared and non-shared Aggregation]. After going through a lot of confusion and getting biased towards UML resources, I have formed my view as follows [need not be taken as final or accurate].
A simplest and loosely coupled relationship I take is Association [it can be unidirectional or bidirectional] where an Object has a reference of other object but both live independently. Association can be Qualified Association if its connected by specific Identity [In OO, identity is an important part of every entity object] e.g. accountNumber for Account of Customer.
Aggregation is collection (of other object types and can be assembled for restricted purpose) maintained by an Object. Still both the objects live independently. e.g. Athletics team. Same student can be part of many such teams like Cycling team [aggregates] and so on. Deleting Athletics team makes no harm to each student entry in college records [they still exist]. Such a relationship can be maintained as Collection of students on Team side or reference of Athletics team for each student being part of team. It depends on more frequently required navigability for application.
Composition is more tight relationship where container object completely holds the contained object and contained object does not have any meaning outside relationship with container object. I can see an example as relationship between Person and Address where for each person we keep separate/ fresh entry of address. For family members Address may have same logical equality, but never physical equality. Change of address for one member does not affect other members [simple test is - DB columns for Person record has extended columns for address as a part of person table.] another example is Single entry (row) of item purchase and Complete bill of items. where deleting bill makes each entry context-less.
If an object instantiates and contains another object completely [never allows outside world to obtain its ref by any means] I would take that as Composition. Techniques like Cloning objects at interaction points instead of passing same ref can be helpful here. In case of association or aggregation, we exchange same reference.
Containment being black-box reuse, is preferred over white-box kind of reuse (implemented using inheritance). Most of the GOF patterns suggest best combinations of Containment for reuse and inheritance for polymorphism. e.g. In case of Adapter pattern, Object Adapter is preferred over Class Adapter.
Implementing all these flavors in Java (Implementations will be language specific) has its own challenge and NOT very straight forward, especially composition. There is a point on learning curve, where one feels (at least I felt) Composition is same as inner class, inner class can help us implement it, but simply having inner class does not give any guarantee of composition.

Is correct relationships of class diagram in UML?

The image shows the logistics of the Warehouse. Very very simplistic. What is its concept: There are documents: ReceivingWayBill, DispatchingWaybill, ReplacementOrder.
They interact with the main classes: Warehouse, Counterparty, Item.
And the Register class: ItemRemainsInWarehouse. It turns out, the document is confirmation of the operation, reception, sending, and so on. The Register simply stores information about the number of remaining goods.
If you miss a lot of problems of this scheme, such as: the lack of generalization, getters and setters and a heap of everything else.
Who can tell: the relationship between classes, and there is concrete aggregation everywhere, are placed correctly, or can we somehow consider the association in more detail?
It is so hard (maybe impossible) to correct your whole model with provided explanation. I give some improvements.
You should put Multiplicity of you relationships. They are so important. In some relationship, you have 1 (ReplacementOrder , Warehouse) and some of your relatioships are maybe * (Item , ReceivingWayBill)
You put Aggregation between your classes and we know that Aggregation is type of Association. You can put Associations too. You can find a lot of similar questions and answers that explain differences between Association and Aggregation (and Composition). see Question 1, Question 2 and Question 3. But I recommend this answer.
I think, there is NOT a very significant difference between Aggregation and Association. See my example in this question.
Robert C. Martin says (see here):
Association represents the ability of one instance to send a message to another instance.
Aggregation is the typical whole/part relationship. This is exactly the same as an association with the exception that instances
cannot have cyclic aggregation relationships (i.e. a part cannot
contain its whole).
Therefor: some of your relationships are exactly an Aggregation. (relationship between Item and other classes). Your Counterparty has not good API definition. Your other relationships is about using Warehouse class. I think (just guess) the other classes only use Warehouse class services (public methods). In this case, they can be Associations. Otherwise, if they need an instance of Warehouse as a part, they are Aggregations.
Aggregation is evil!
Read the UML specs about the two variants they introduced (p. 110):
none: Indicates that the Property has no aggregation semantics. [hear, hear!]
shared: Indicates that the Property has shared aggregation semantics. Precise semantics of shared aggregation varies by application area and modeler.
composite: Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for the existence and storage of the composed objects (see the definition of parts in 11.2.3).
Composite aggregation is a strong form of aggregation that requires a part object be included in at most one composite object at a time. If a composite object is deleted, all of its part instances that are objects are deleted with it.
Now, that last sentence clearly indicates where you should use composite (!) aggregation: in security related appications. When you delete a person record in a database you need to also delete all related entities. That often used example with a car being composed of motor, tires, etc. does not really fit. The tires do not vanish when you "delete" the car. Simply because you can not delete it. Even worse is the use of a shared composite since it has no definition per definition (sic!).
So what should you do? Use multiplicities! That is what people usually want to show. There are 0..n, 1, etc. elements related to to the class at the other side. Eventually you name these by using roles to make it explicit.
If you consider DispatchingWaybill and ReceivingWaybill it looks like those are association classes. With the right multiplicities (1-* / *-1) you can leave it this way. (Edit: note the little dots at the association's ends which tell that the class at the opposite has an attribute named after the role.)
Alternatively attach either with a dashed line to an association between the classes where they are currently connected to.

In aggregation, is the "whole's" life dependent on the parts? Can a simple association be a one-to-many relationship?

I have been searching all over the internet and can't seem to find anything that specifically answers my question.
As far as I can tell, a simple association does not imply any form of life dependency.
A Composition is a whole-part relationship where the lives of the two classes are tied. For example, building and room. A room can not be created without a building, and if a building "dies", so does the room, and vice versa. BOTH are dependent on each other.
I do understand that aggregation is a weaker composition. For example, Car and Tires. But does aggregation imply dependence on the whole's side? Can the whole exist without the parts? Also, in aggregation, do the parts only belong to one whole?
I've found conflicting answers...
I have one more question. Can a simple association be a one-to-many relationship? For example, I am designing a prison management system, a PrisonBlock has Guards. If I say a guard is only assigned to one block. Their lives are obviously not dependent on each other. But there IS, however, a whole-part relationship. Or is there!? I'm confused. The way I see it, the Block (whole) has Guards (parts). Is this association or aggregation? And why? What would I have to change for it to become one or the other? Can an association even BE a one-to-many relationship!?
Aggregation is simply Has-a realtionship. In your example, Car should have tires . Because if it is not then that is not a Car. But Tires doesn't need to have car necessarily. Simply it is Has-a relationship.
2.Association is a relationship between two separate classes which can be of any type say one to one, one to may etc. It joins two entirely separate entities.
Aggregation is a special form of association which is a unidirectional one way relationship between classes (or entities)
THink like this:
If your prisonBlock class can exist without Guard class?
Or Guard class can exist without your prisonBlock class?
In compostion we create a opject which is defined in that class scope for example
class a:
b comObject = new b()
while in aggregation shows has a relation which means object has parent child kind of relationship but this do not means that when parent class die child also die because parent just make a deep copy
in case of association we only make a shallow copy and the differences between association and aggregation is that the related object can not have another parent

In UML class diagram can composition be bidirectional?

Can composition be bidirectional in a way that both classes are aware of each other?
And if not, what is the default direction of composition?
You should distinguish navigability and aggregation. Arrow and diamond.
Arrow A->B means only that B is reachable from A in some simple way. If A contains a composition of B, it means that
the composite object has responsibility for the existence and storage
of the composed objects (parts).
(citation from OMG Unified Modeling Language TM (OMG UML) - p.109)
So, can composition have bi-directional navigability?
Yes. It is quite normal.
If, for example, you have decided to destroy B in some of its functions, you MUST reach A and destroy it from there. So, composition has bi-directional navigability often enough. Notice, that bi-directional navigability, according to both current and coming UML standards, is shown as line without arrows on both sides. Both-sided arrow is deprecated. THAT is the reason you won't see it often.
Can the composition itself be bi-directional? Can we see black diamonds on both sides of an association?
No, of course this sort of association cannot be mutual, for it is impossible for B to be created in A only and, simultaneously, for A to be created in B only.
What is interesting, the shared aggregation (empty diamond) cannot be mutual, too, but here the limitation is not inherent, it is simply forbidden by UML standard.
Yes, Composition does not add constraints with regards to the navigability of the association.
More info on the difference between Accociation, Composition and Aggregations can be found here: UML Composition vs Aggregation vs Association
From https://www.lucidchart.com/pages/uml/class-diagram:
Bidirectional associations are the default associations between two classes and are represented by a straight line between two classes. Both classes are aware of each other and of their relationship with each other. In the example above, the Car class and RoadTrip class are interrelated. At one end of the line the Car takes on the association of "assignedCar" with the multiplicity value of 0..1 which means that when the instance of RoadTrip exists, it can either have one instance of Car associated with it or no Cars associated with it. In this case, a separate Caravan class with a multiplicity value of 0..* is needed to demonstrate that a RoadTrip could have multiple instances of Cars associated with it. Since one Car instance could have multiple "getRoadTrip" associations-- in other words, one car could go on multiple road trips--the multiplicity value is set to 0..*
In the past I had the same opinion as Gangnus with
So, can composition have bi-directional navigability?
But following some recent discussion I had a more detailed look into the UML specs. And simply, that statement is not true (only partially). Let's look into the UML 2.5 specs. On p. 110 it is stated
Sometimes a Property is used to model circumstances in which one instance is used to group together a set of instances; this is called aggregation. To represent such circumstances, a Property has an aggregation property, of type AggregationKind; the instance representing the whole group is classified by the owner of the Property, and the instances representing the grouped individuals are classified by the type of the Property. AggregationKind is an enumeration with the following literal values:
[omitting shared aggregation]
composite: Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for the existence and storage of the composed objects (see the definition of parts in 11.2.3).
Composite aggregation is a strong form of aggregation that requires a part object be included in at most one composite object at a time. If a composite object is deleted, all of its part instances that are objects are deleted with it.
Note my emphasis on the object/instance in the above text. So UML just talks of responsibility. If A composes B it will be responsible to delete B when it is destroyed itself. Vice versa B would be responsible for A's destruction. So, if you have references in both directions (i.e. diamonds on both sides) then you will be reponsible to delete the object on the other side. This of course works only if just one of both holds a reference to the other. If both would have a reference, it would not be possible to have a directed responsibility (because it's circular).
I still think that having composite aggregation on both sides is not really a good idea. But according to the specification it is possible.

Aggregation vs Composition vs Association vs Direct Association

I am reviewing my knowledge in object-oriented programming. Under the relationship between classes topic, I have encountered some relationships which are a bit ambiguous to me.
I know dependency "uses-a" and inheritance "is-a" but I'm a bit unfamiliar with Aggregation, Composition, Association and Direct Association; also, which of them is "has-a" relationship. Some use Aggregation interchangeably with Association.
What is Direct Association? Also, what is Composition? In UML diagrams, the arrows that represents them are different. I would be really thankful if you could clear these things out for me.
Please note that there are different interpretations of the "association" definitions. My views below are heavily based on what you would read in Oracle Certification books and study guides.
Temporary association
A usage inside a method, its signature or as a return value. It's not really a reference to a specific object.
Example: I park my Car in a Garage.
Composition association
A so-called "STRONG relationship": The instantiation of the linked object is often hard
coded inside the constructor of the object. It cannot be set from
outside the object. (Composition cannot be a many-to-many
relationship.)
Example: A House is composed of Stones.
Direct association
This is a "WEAK relationships". The objects can live independent and there are usually setters or other ways to inject the dependent objects.
Example: A Car can have Passengers.
Aggregation association
Very similar to a Direct association. It's also a "WEAK relationship" with independent objects. However here the associated objects are a crucial part of the containing object.
Example: A Car should have Tires.
Note: Both Direct associations and Aggregation associations are often generalized as "Associations". The difference is rather subtle.
The whole point of OOP is that your code replicates real world objects, making your code readable and maintainable.
1. Association
Association is: Class A uses Class B.
Example:
Employee uses Bus/train Services for transportation.
Computer uses keyboard as input device
And in In UML diagram Association is denoted by a normal arrow head.
2. Aggregation
Class A contains Class B, or Class A has an instance of Class B.
An aggregation is used when life of object is independent of container object. But still container object owns the aggregated object.
So if we delete class A that doesn't mean that class B will also be deleted. E.g. none, or many, teachers can belong to one or many departments.
The relationship between Teachers and Departments is aggregation.
3. Composition
Class A owns Class B.
E.g. Body consists of Arm, Head, Legs. BankAccount consists of Balance and TransactionHistory.
So if class A gets deleted then also class B will get deleted.
Direct association has nothing in common with the other three. It does not belong to UML at all, it is the IBM requirements modelling term.
As for others,
Association A->B is a child of Dependency. Association means, that A (or its instance) has some easy way to get to instance of B. For example, a.x.y.b. Or by function, or by some local variable. Or by a direct reference or pointer, or something else (there are many languages in the world). As you see, there is no strict border between dependency and association.
One of attributes of Association is Aggregation, it can have values: None, shared (often incorrectly called aggregation), and composition.
If A (or instance) has some (or one) instances of B so, that destroying of association means the destroying of B instances, it is the composition.
If you or a tool author had decided, that some has-a relationship, that is weaker that composition, needs to be specially shown, you can use shared aggregation. Usually it is some collections of references to B in A.
There are some more interesting attributes of associations. Look here if you are interested.
An association between object types classifies relationships between objects of those types. For instance, the association Person-isEmployedBy-Enterprise may classify the relationships PeterMiller-isEmployedBy-IBM, SusanSmith-isEmployedBy-IBM and SarahAnderson-isEmployedBy-Google between the objects PeterMiller, SusanSmith and SarahAnderson of type Person as well as Google and IBM of type Enterprise. In other words, associations are relationship types with two or more object types participating in them. An association between two object types is called binary. While binary associations are more common, we may also have to deal with n-ary associations, where n is a natural number greater than 2. For instance, Person-isTreatedIn-Hospital-for-Disease is a 3-ary ("ternary") association between the object types Person, Hospital and Disease.
I guess that with "direct association" you mean a directional (or directed) association, which is an association (with a domain class and a range class) that represents a reference property in its domain class. Such a directional association has an "ownership dot" at its target end.
Please see this book chapter for more about associations.
And see my answer to this SO question for an explanation of aggregations and compositions.