backtracking line search parameter - optimization

I am reading/practicing a bit with optimization using Nocedal&Wright, when I got the the simple backtracking algorithm, where if d is my line direction and a is the step size the algorithm looks for a such that
for some 0 < c < 1. They advised to use a very small c, order of 10^-4.
That seemed very odd to me, as a very loss demand.
I did some experimenting with c = 0.3 and it seemed to work much better then the sugested 10^-4 ( for a simple quadratic problem and steepest descent).
Any intuition as to why such a low value should work and why didn't it do well for me?
Thanks.

∇ f() may have completely different scales for different problems;
one stepsize cannot fit all.
Consider f(x) = sin( ω . x ): the right c will depend on ω,
which may be on the order of 1, or 1e-6, or ...
Thus it's a good idea to scale ∇ f() to about norm 1, then play with c.
(People who recommend "c = ...", please describe your problem size and scales.)
Add some noise to your quadratic, see what happens as you increase the noise.
Try quadratic + noise in 2d, 10d.
In machine learning, there seems to be quite a lot of folklore on c a.k.a. learning rate;
google
learning-rate on stackexchange.com ,
also gradient-descent step-size
and adagrad adaptive gradient.

Related

Matrix Inverse in Visual Basic

I'm writing a program to do the Newton Raphson Method for n variable (System of equation) using Datagridview. My problem is to determine the inverse for Jacobian Matrix. I've search in internet to find a solution but a real couldn't get it until now so if someone can help me I will real appreciate. Thanks in advance.
If you are asking for a recommendation of a library, that is explicitly off topic in Stack Overflow. However below I mention some algorithms that are commonly used; this may help you to find, or write, what you need. I would, though, not recommend writing something, unless you really want to, as it can be tricky to get these algorithms right. If you do decide to write something I'd recommend the QR method, as the easiest to write, though the theory is a little subtle.
First off do you really need to compute the inverse? If, for example, what you need to do is to compute
x = inv(J)*y
then it's faster and more accurate to treat this problem as
solve J*x = y for x
The methods below all factor J into other matrices, for which this solution can be done. A good package that implements the factorisation will also have the code to perform the solution.
If you do really really need the inverse often the best way is to solve, one column at a time
J*K = I for K, where I is the identity matrix
LU decomposition
This may well be the fastest of the algorithms described here but is also the least accurate. An important point is that the algorithm must include (partial) pivoting, or it will not work on all invertible matrices, for example it will fail on a rotation through 90 degrees.
What you get is a factorisation of J into:
J = P*L*U
where P is a permutation matrix,
L lower triangular,
U upper triangular
So having factorised, to solve for x we do three steps, each straightforward, and each can be done in place (ie all the x's can be the same variable)
Solve P*x1 = y for x1
Solve L*x2 = x1 for x2
Solve U*x = x2 for x
QR decomposition
This may be somewhat slower than LU but is more accurate. Conceptually this factorises J into
J = Q*R
Where Q is orthogonal and R upper triangular. However as it is usually implemented you in fact pass y as well as J to the routine, and it returns R (in J) and Q'*y (in the passed y), so to solve for x you just need to solve
R*x = y
which, given that R is upper triangular, is easy.
SVD (Singular value decomposition)
This is the most accurate, but also the slowest. Moreover unlike the others you can make progress even if J is singular (you can compute the 'generalised inverse' applied to y).
I recommend reading up on this, but advise against implementing it yourself.
Briefly you factorise J as
J = U*S*V'
where U and V are orthogonal and S diagonal.
There are, of course, many other ways of solving this problem. For example if your matrices are very large (dimension in the thousands) an it may, particularly if they are sparse (lots of zeroes), be faster to use an iterative method.

Does any one know how to solve the following equation?

When I reading this paper http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1976ApJ...209..214B&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf
I try to solve eq(49) numerically, it seems a fokker-planck equation, I find finite difference method doesn't work, it's unstable.
Does any one know how to solve it?
computational science stack exchange is where you can ask and hope for an answer. Or you could try its physics cousin. The equation, you quote, is integro-differential equation, fairly non-linear... Fokker-Plank looking equation. Definitely not the typical Fokker-Plank.
What you can try is to discretize the space part of the function g(x,t) using finite differences or finite-elements. After all, 0 < x < x_max and you have boundary conditions. You also have to discretize the corresponding integration. So maybe finite elements might be more appropriate? Finite elements means you can write g(x, t) as a series of a well chosen basis of compactly supported simple enough functions Bj(x) : j = 1...N in the interval [0, x_max]
g(x,t) = sum_j=1:N gj(t)*Bj(x)
That will turn your function into a (large) vector gj(t) = g(x_j, t), for j = 1, 1, ...., N. As a result, you will obtain a non-linear system of ODEs
dgj(t)/dt = Qj(g1(t), g2(t), ..., gN(t))
j = 1 ... N
After that use something like Runge-Kutta to integrate numerically the ODE system.

Solving a Mixed Integer Quadratic Program using SCIP

I have a mixed integer quadratic program (MIQP) which I would like to solve using SCIP. The program is in the form such that on fixing the integer variables, the problem turns out to be a linear program. And on fixing the the continuous variables it becomes a Integer Program. A simple example :
max. \Sigma_{i} n_i * f_i(x_i)
such that.
n_1 * x_1 + n2 * x_2 < t
n_3 * x_1 + n2 * x_2 < m
.
.
many random quadratic constraints in n_i's and x_i's
so on
Here f_i is a concave piecewise linear function.
x_i's are continuous variables ( they take real values )
n_i's are integer variables
I am able to solve the problem using SCIP. But on problems with a large number of variables SCIP takes a lot of time to find the solution. I have particularly noticed that it does not find many primal solutions. Thus the rate at which the upper bound reduces is very slow. However, I could get better results by doing set heuristics emphasis aggressive.
It would be great if anyone can guide me on the following questions :
1) Is there any particular algorithm/ Software package which solves problems that fit perfectly into the model as described above ?
2) Suggestions on how to improve the rate at which primal solutions are found.
3) What type of branching can I use to get better results ?
4) Any guidance on improving performance would be really helpful.
I am okay with relaxing the integer constraints as well.
Thanks
1) The algorithm in SCIP should fit your problem. There are other software packages that implement similar algorithms, e.g., BARON and ANTIGONE.
2) Have a look which primal heuristics were successful in your run and change their parameters to run them more frequently.
3) No idea. Default should be ok.
4) Make sure that your variables have good bounds. Tighter bounds allow for a tighter relaxation to be constructed.
If you can post an instance of your problem somewhere, or a log of a SCIP run, including the detailed statistics at the end, maybe someone can give more hints on what to improve.

scipy.optimize.fmin_l_bfgs_b returns 'ABNORMAL_TERMINATION_IN_LNSRCH'

I am using scipy.optimize.fmin_l_bfgs_b to solve a gaussian mixture problem. The means of mixture distributions are modeled by regressions whose weights have to be optimized using EM algorithm.
sigma_sp_new, func_val, info_dict = fmin_l_bfgs_b(func_to_minimize, self.sigma_vector[si][pj],
args=(self.w_vectors[si][pj], Y, X, E_step_results[si][pj]),
approx_grad=True, bounds=[(1e-8, 0.5)], factr=1e02, pgtol=1e-05, epsilon=1e-08)
But sometimes I got a warning 'ABNORMAL_TERMINATION_IN_LNSRCH' in the information dictionary:
func_to_minimize value = 1.14462324063e-07
information dictionary: {'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 147, 'grad': array([ 1.77635684e-05, 2.87769808e-05, 3.51718654e-05,
6.75015599e-06, -4.97379915e-06, -1.06581410e-06]), 'nit': 0, 'warnflag': 2}
RUNNING THE L-BFGS-B CODE
* * *
Machine precision = 2.220D-16
N = 6 M = 10
This problem is unconstrained.
At X0 0 variables are exactly at the bounds
At iterate 0 f= 1.14462D-07 |proj g|= 3.51719D-05
* * *
Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value
* * *
N Tit Tnf Tnint Skip Nact Projg F
6 1 21 1 0 0 3.517D-05 1.145D-07
F = 1.144619474757747E-007
ABNORMAL_TERMINATION_IN_LNSRCH
Line search cannot locate an adequate point after 20 function
and gradient evaluations. Previous x, f and g restored.
Possible causes: 1 error in function or gradient evaluation;
2 rounding error dominate computation.
Cauchy time 0.000E+00 seconds.
Subspace minimization time 0.000E+00 seconds.
Line search time 0.000E+00 seconds.
Total User time 0.000E+00 seconds.
I do not get this warning every time, but sometimes. (Most get 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' or 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH').
I know that it means the minimum can be be reached in this iteration. I googled this problem. Someone said it occurs often because the objective and gradient functions do not match. But here I do not provide gradient function because I am using 'approx_grad'.
What are the possible reasons that I should investigate? What does it mean by "rounding error dominate computation"?
======
I also find that the log-likelihood does not monotonically increase:
########## Convergence !!! ##########
log_likelihood_history: [-28659.725891322563, 220.49993177669558, 291.3513633060345, 267.47745327823907, 265.31567762171181, 265.07311121000367, 265.04217683341682]
It usually start decrease at the second or the third iteration, even through 'ABNORMAL_TERMINATION_IN_LNSRCH' does not occurs. I do not know whether it this problem is related to the previous one.
Scipy calls the original L-BFGS-B implementation. Which is some fortran77 (old but beautiful and superfast code) and our problem is that the descent direction is actually going up. The problem starts on line 2533 (link to the code at the bottom)
gd = ddot(n,g,1,d,1)
if (ifun .eq. 0) then
gdold=gd
if (gd .ge. zero) then
c the directional derivative >=0.
c Line search is impossible.
if (iprint .ge. 0) then
write(0,*)' ascent direction in projection gd = ', gd
endif
info = -4
return
endif
endif
In other words, you are telling it to go down the hill by going up the hill. The code tries something called line search a total of 20 times in the descent direction that you provide and realizes that you are NOT telling it to go downhill, but uphill. All 20 times.
The guy who wrote it (Jorge Nocedal, who by the way is a very smart guy) put 20 because pretty much that's enough. Machine epsilon is 10E-16, I think 20 is actually a little too much. So, my money for most people having this problem is that your gradient does not match your function.
Now, it could also be that "2. rounding errors dominate computation". By this, he means that your function is a very flat surface in which increases are of the order of machine epsilon (in which case you could perhaps rescale the function),
Now, I was thiking that maybe there should be a third option, when your function is too weird. Oscillations? I could see something like $\sin({\frac{1}{x}})$ causing this kind of problem. But I'm not a smart guy, so don't assume that there's a third case.
So I think the OP's solution should be that your function is too flat. Or look at the fortran code.
https://github.com/scipy/scipy/blob/master/scipy/optimize/lbfgsb/lbfgsb.f
Here's line search for those who want to see it. https://en.wikipedia.org/wiki/Line_search
Note. This is 7 months too late. I put it here for future's sake.
As pointed out in the answer by Wilmer E. Henao, the problem is probably in the gradient. Since you are using approx_grad=True, the gradient is calculated numerically. In this case, reducing the value of epsilon, which is the step size used for numerically calculating the gradient, can help.
I also got the error "ABNORMAL_TERMINATION_IN_LNSRCH" using the L-BFGS-B optimizer.
While my gradient function pointed in the right direction, I rescaled the actual gradient of the function by its L2-norm. Removing that or adding another appropriate type of rescaling worked. Before, I guess that the gradient was so large that it went out of bounds immediately.
The problem from OP was unbounded if I read correctly, so this will certainly not help in this problem setting. However, googling the error "ABNORMAL_TERMINATION_IN_LNSRCH" yields this page as one of the first results, so it might help others...
I had a similar problem recently. I sometimes encounter the ABNORMAL_TERMINATION_IN_LNSRCH message after using fmin_l_bfgs_b function of scipy. I try to give additional explanations of the reason why I get this. I am looking for complementary details or corrections if I am wrong.
In my case, I provide the gradient function, so approx_grad=False. My cost function and the gradient are consistent. I double-checked it and the optimization actually works most of the time. When I get ABNORMAL_TERMINATION_IN_LNSRCH, the solution is not optimal, not even close (even this is a subjective point of view). I can overcome this issue by modifying the maxls argument. Increasing maxls helps to solve this issue to finally get the optimal solution. However, I noted that sometimes a smaller maxls, than the one that produces ABNORMAL_TERMINATION_IN_LNSRCH, results in a converging solution. A dataframe summarizes the results. I was surprised to observe this. I expected that reducing maxls would not improve the result. For this reason, I tried to read the paper describing the line search algorithm but I had trouble to understand it.
The line "search algorithm generates a sequence of
nested intervals {Ik} and a sequence of iterates αk ∈ Ik ∩ [αmin ; αmax] according to the [...] procedure". If I understand well, I would say that the maxls argument specifies the length of this sequence. At the end of the maxls iterations (or less if the algorithm terminates in fewer iterations), the line search stops. A final trial point is generated within the final interval Imaxls. I would say the the formula does not guarantee to get an αmaxls that respects the two update conditions, the minimum decrease and the curvature, especially when the interval is still wide. My guess is that in my case, after 11 iterations the generated interval I11 is such that a trial point α11 respects both conditions. But, even though I12 is smaller and still containing acceptable points, α12 is not. Finally after 24 iterations, the interval is very small and the generated αk respects the update conditions.
Is my understanding / explanation accurate?
If so, I would then be surprised that when maxls=12, since the generated α11 is acceptable but not α12, why α11 is not chosen in this case instead of α12?
Pragmatically, I would recommend to try a few higher maxls when getting ABNORMAL_TERMINATION_IN_LNSRCH.

Normal Distribution function

edit
So based on the answers so far (thanks for taking your time) I'm getting the sense that I'm probably NOT looking for a Normal Distribution function. Perhaps I'll try to re-describe what I'm looking to do.
Lets say I have an object that returns a number of 0 to 10. And that number controls "speed". However instead of 10 being the top speed, I need 5 to be the top speed, and anything lower or higher would slow down accordingly. (with easing, thus the bell curve)
I hope that's clearer ;/
-original question
These are the times I wish I remembered something from math class.
I'm trying to figure out how to write a function in obj-C where I define the boundries, ex (0 - 10) and then if x = foo y = ? .... where x runs something like 0,1,2,3,4,5,6,7,8,9,10 and y runs 0,1,2,3,4,5,4,3,2,1,0 but only on a curve
Something like the attached image.
I tried googling for Normal Distribution but its way over my head. I was hoping to find some site that lists some useful algorithms like these but wasn't very successful.
So can anyone help me out here ? And if there is some good sites which shows useful mathematical functions, I'd love to check them out.
TIA!!!
-added
I'm not looking for a random number, I'm looking for.. ex: if x=0 y should be 0, if x=5 y should be 5, if x=10 y should be 0.... and all those other not so obvious in between numbers
alt text http://dizy.cc/slider.gif
Okay, your edit really clarifies things. You're not looking for anything to do with the normal distribution, just a nice smooth little ramp function. The one Paul provides will do nicely, but is tricky to modify for other values. It can be made a little more flexible (my code examples are in Python, which should be very easy to translate to any other language):
def quarticRamp(x, b=10, peak=5):
if not 0 <= x <= b:
raise ValueError #or return 0
return peak*x*x*(x-b)*(x-b)*16/(b*b*b*b)
Parameter b is the upper bound for the region you want to have a slope on (10, in your example), and peak is how high you want it to go (5, in the example).
Personally I like a quadratic spline approach, which is marginally cheaper computationally and has a different curve to it (this curve is really nice to use in a couple of special applications that don't happen to matter at all for you):
def quadraticSplineRamp(x, a=0, b=10, peak=5):
if not a <= x <= b:
raise ValueError #or return 0
if x > (b+a)/2:
x = a + b - x
z = 2*(x-a)/b
if z > 0.5:
return peak * (1 - 2*(z-1)*(z-1))
else:
return peak * (2*z*z)
This is similar to the other function, but takes a lower bound a (0 in your example). The logic is a little more complex because it's a somewhat-optimized implementation of a piecewise function.
The two curves have slightly different shapes; you probably don't care what the exact shape is, and so could pick either. There are an infinite number of ramp functions meeting your criteria; these are two simple ones, but they can get as baroque as you want.
The thing you want to plot is the probability density function (pdf) of the normal distribution. You can find it on the mighty Wikipedia.
Luckily, the pdf for a normal distribution is not difficult to implement - some of the other related functions are considerably worse because they require the error function.
To get a plot like you showed, you want a mean of 5 and a standard deviation of about 1.5. The median is obviously the centre, and figuring out an appropriate standard deviation given the left & right boundaries isn't particularly difficult.
A function to calculate the y value of the pdf given the x coordinate, standard deviation and mean might look something like:
double normal_pdf(double x, double mean, double std_dev) {
return( 1.0/(sqrt(2*PI)*std_dev) *
exp(-(x-mean)*(x-mean)/(2*std_dev*std_dev)) );
}
A normal distribution is never equal to 0.
Please make sure that what you want to plot is indeed a
normal distribution.
If you're only looking for this bell shape (with the tangent and everything)
you can use the following formula:
x^2*(x-10)^2 for x between 0 and 10
0 elsewhere
(Divide by 125 if you need to have your peek on 5.)
double bell(double x) {
if ((x < 10) && (x>0))
return x*x*(x-10.)*(x-10.)/125.;
else
return 0.;
}
Well, there's good old Wikipedia, of course. And Mathworld.
What you want is a random number generator for "generating normally distributed random deviates". Since Objective C can call regular C libraries, you either need a C-callable library like the GNU Scientific Library, or for this, you can write it yourself following the description here.
Try simulating rolls of dice by generating random numbers between 1 and 6. If you add up the rolls from 5 independent dice rolls, you'll get a surprisingly good approximation to the normal distribution. You can roll more dice if you'd like and you'll get a better approximation.
Here's an article that explains why this works. It's probably more mathematical detail than you want, but you could show it to someone to justify your approach.
If what you want is the value of the probability density function, p(x), of a normal (Gaussian) distribution of mean mu and standard deviation sigma at x, the formula is
p(x) = exp( ((x-mu)^2)/(2*sigma^2) ) / (sigma * 2 * sqrt(pi))
where pi is the area of a circle divided by the square of its radius (approximately 3.14159...). Using the C standard library math.h, this is:
#include <math>
double normal_pdf(double x, double mu, double sigma) {
double n = sigma * 2 * sqrt(M_PI); //normalization factor
p = exp( -pow(x-mu, 2) / (2 * pow(sigma, 2)) ); // unnormalized pdf
return p / n;
}
Of course, you can do the same in Objective-C.
For reference, see the Wikipedia or MathWorld articles.
It sounds like you want to write a function that yields a curve of a specific shape. Something like y = f(x), for x in [0:10]. You have a constraint on the max value of y, and a general idea of what you want the curve to look like (somewhat bell-shaped, y=0 at the edges of the x range, y=5 when x=5). So roughly, you would call your function iteratively with the x range, with a step that gives you enough points to make your curve look nice.
So you really don't need random numbers, and this has nothing to do with probability unless you want it to (as in, you want your curve to look like a the outline of a normal distribution or something along those lines).
If you have a clear idea of what function will yield your desired curve, the code is trivial - a function to compute f(x) and a for loop to call it the desired number of times for the desired values of x. Plot the x,y pairs and you're done. So that's your algorithm - call a function in a for loop.
The contents of the routine implementing the function will depend on the specifics of what you want the curve to look like. If you need help on functions that might return a curve resembling your sample, I would direct you to the reading material in the other answers. :) However, I suspect that this is actually an assignment of some sort, and that you have been given a function already. If you are actually doing this on your own to learn, then I again echo the other reading suggestions.
y=-1*abs(x-5)+5