clipping a triagle with a circle in matplotlib - matplotlib

I would like to draw a triangle, but one of the sides needs to be a circle segment. The example is not working: all blue outside the circle needs to be removed. Can this be done directly, without calculating the entire contour myself?
Thank you!
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
polygon = plt.Polygon([(0,0.6),(1,2),(2,0.4)], True)
circle=plt.Circle((0,0),1.0,facecolor='None', edgecolor='black')
ax.add_patch(polygon)
ax.add_patch(circle)
plt.show()

You can use the set_clip_path property if you capture the added patch of the polygon. Given your example:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
polygon = plt.Polygon([(0,0.6),(1,2),(2,0.4)], True)
circle = plt.Circle((0,0),1.0,facecolor='None', edgecolor='black')
patch_poly = ax.add_patch(polygon)
ax.add_patch(circle)
patch_poly.set_clip_path(circle)

Related

How to have only 1 shared colorbar for multiple plots [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Matplotlib make color map have no transparency

def visualize(goal_x, goal_y, goal_z, epoch_arr):
# %% Create Color Map
colormap = plt.get_cmap("binary")
norm = matplotlib.colors.Normalize(vmin=min(epoch_arr), vmax=max(epoch_arr))
# %% 3D Plot
fig = plt.figure()
ax3D = fig.add_subplot(111, projection='3d')
ax3D.set_facecolor('xkcd:salmon')
ax3D.scatter(goal_x, goal_y, goal_z, s=100, c=colormap(norm(epoch_arr.values)), marker='o')
plt.show()
The above code produces the following picture:
However, as you can see there is a point in the right side that is clearly still not 100% opaque. You can see the grid lines through the point. How do I make the scatter plot points 100% opaque, no transparency?
Some tricks will help. Here I plot all the markers in white first, then plot again on top using the intended color.
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# make-up some data
goal_x = list(range(10))
goal_y = list(range(10))
goal_z = list(range(10))
epoch_arr = np.linspace(0,1,10)
fig = plt.figure(figsize=(8,8))
ax3D = fig.add_subplot(111, projection='3d')
ax3D.set_facecolor('xkcd:salmon')
# First plot: all markers are in white color
ax3D.scatter(goal_x, goal_y, goal_z, s=500, c='w', marker='o', alpha=1.0, zorder=10)
colormap = plt.get_cmap("binary")
norm = matplotlib.colors.Normalize(vmin=min(epoch_arr), vmax=max(epoch_arr))
#ax3D.scatter(goal_x, goal_y, goal_z, s=100, c=colormap(norm(epoch_arr.values)), marker='o')
# Second plot: use intended colormap
ax3D.scatter(goal_x, goal_y, goal_z, s=500, c='b', marker='o', zorder=11)
plt.show()
The resulting plot:
Setting alpha=1 should be enough.
ax3D.scatter(..., alpha=1)
Alternatively set depthshade=False
ax3D.scatter(..., depthshade=False)
The result will be the same in both cases.

Pyplot: Circle class: What are the units of the axis arg?

What units does Pyplot use for the radius size of Circle class objects? Playing around with it, it seems that a radius of .6 is already almost off the screen... small example below
import matplotlib as plt
plt.use('TkAgg')
import matplotlib.pyplot as plt
circle = plt.Circle((0.5, 0.5), 0.6, color='white')
fig, ax = plt.subplots()
plt.subplot
plt.axis('off')
ax.add_artist(circle)
fig.set_facecolor("black")
Absolute units are used for the radius. The reason why 0.6 goes out of the axis is that by default, if you just plot a blank figure, its extent is from 0 to 1. For example
fig, ax = plt.subplots()
ax.set_aspect('equal')
results in
Now if you center your circle at (0.5, 0.5) and use radius of 0.6, it will go outside the axis and you will see a truncated patch as you see in your question.
Things become clear when you remove plt.axis('off') and use radius=0.5
circle = plt.Circle((0.5, 0.5), 0.5, color='blue')
fig, ax = plt.subplots(figsize=(3,3))
# plt.axis('off') <--- commented out
ax.add_artist(circle)
fig.set_facecolor("gray")
ax.set_aspect('equal')
plt.plot([0.5], [0.5], 'ro')

Matplotlib plot over imshow while keeping axis size

Whenever I use imshow() to plot an image, plotting 1D data over it in a twinned bottom x-axis changes the size and aspect ratio of the initial x-axis created with for imshow(). How do I avoid this behavior? Here is how to reproduce the issue:
import numpy as np
import matplotlib
matplotlib.use('macosx')
import matplotlib.pyplot as plt
im = np.random.rand(2856, 4290)
light_curve = im[1000, :]
fig = plt.figure(1, figsize=(10,10))
ax1 = plt.subplot(2,1,1)
ax1.imshow(im, cmap='gray', origin='lower')
ax2 = plt.subplot(2,1,2)
ax2.imshow(im, cmap='gray', origin='lower')
# Setting aspect ratio to equal does not help
ax2.set_aspect('equal')
ax21 = ax2.twinx()
ax21.plot(light_curve, alpha=0.7)
# Setting axis limits does not help
ax1.axis([0, im.shape[1], 0, im.shape[0]])
ax21.set_xlim([0, im.shape[1]])
And here is what it looks like with my graphical backend (macosx, if that is of any relevance)
Isn't it the purpose of twinx() used above to help with this in the first place?
So how may I keep the initial imshow() x-axis fixed and have the subsequent axis of the 1D plot simply fit, without resizing or messing with the aspect ratio, without going completely manual with building my axes?
It is indeed a bit unfortunate that the aspect does not propagate to the twin axes in the sense that it would have the same box around it.
I think the only way to overcome this is to calculate the aspect manually and set it for the twin axes as well.
import numpy as np
import matplotlib.pyplot as plt
im = np.random.rand(285, 429)
light_curve = im[100, :]
fig = plt.figure(1, figsize=(8,8))
ax1 = plt.subplot(2,1,1)
ax1.imshow(im, cmap='gray', origin='lower')
ax2 = plt.subplot(2,1,2)
ax2.imshow(im, cmap='gray', origin='lower')
ax2.set_aspect("equal", "box-forced")
ax21 = ax2.twinx()
ax21.plot(light_curve, alpha=0.7)
# Setting axis limits does not help
ax21.set_xlim(ax1.get_xlim())
a = np.diff(ax21.get_ylim())[0]/np.diff(ax1.get_xlim())*im.shape[1]/im.shape[0]
ax21.set_aspect(1./a, "box-forced")
plt.show()

matplotlib get all axes that a given figure contains to apply some settings

I'm writing a function that modifies the axes size and position on a figure, but when comes twin axes it makes a problem:
import matplotlib.pyplot as plt
def fig_layout(fig, vspace = 0.3): # function to make space at the bottom for legend box and
#+ other text input
for ax in ~~~fig.axes~~~: # Here 'fig.axes' is not right, I need to find the exact syntax
#+ I need to put
box = ax.get_position()
ax.set_position([box.x0, box.y0 + box.height * vspace,
box.width, box.height * (1 - vspace)])
x = np.arange(10)
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
n = 3
line = {}
for i in range(3):
line['lines'].append(ax1.plot(x, i*x**2))
line['labels'].append(r'$y = %i \cdot x^2$'%i)
ax1.set_title('example plot')
ax2 = ax1.twinx()
line['lines'].append(ax2.plot(x, x^-1, label = r'$y = x^-1$'))
line['labels'].append(r'$y = x^-1$')
leg = ax1.legend(line['lines'], line['labels'])
fig_layout(fig)
# I will put the legend box at the bottom of the axes with another function.
plt.show()
I think you can use fig.get_axes().
For example, to modify the title of the first sub-plot, you can do:
plt.gcf().get_axes()[0].set_title("example plot")