ninject binding for specify class - ninject

if I have the interface interfaceA
public interface IInterfaceA
{
void MethodA();
void MethodB();
}
and I have the classA
class ClassA:IInterfaceA
{
public void MethodA()
{
}
public void MethodB()
{
}
}
it's ok that I use ninject's bind,but when it comes that I have a method that called MethodC,I think the method should only exists in classA(just for classA) and should not be defined in InterfaceA,so how to use ninject'bind when just calling like this:
var a = _kernel.get<IInterfaceA>()
should I convert the result into ClassA ? (is that a bad habbit?) or there are another solution

Usually this is needed when you want interface separation but need both interfaces to be implemented by the same object since it holds data relevant to both interfaces. If that is not the case you would be able to separate interfaces and implementation completely - and then you should do so.
For simplicitys sake i'm going to asume Singleton Scope, but you could also use any other scope.
Create two interfaces instead:
public interface IInterfaceA {
{
void MethodA();
}
public interface IInterfaceC {
void MethodC();
}
public class SomeClass : IInterfaceA, IInterfaceC {
....
}
IBindingRoot.Bind<IInterfaceA, IInterfaceB>().To<SomeClass>()
.InSingletonScope();
var instanceOfA = IResolutionRoot.Get<IInterfaceA>();
var instanceOfB = IResolutionRoot.Get<IInterfaceB>();
instanceOfA.Should().Be(instanceOfB);
Does this answer your question?

Related

Ninject factory method with input parameter to determine which implementation to return

I am trying to find a way to have a factory class / method that would take in an object or some kind of identifier (string or type) then based off the input parameter determine which implementation of the interface to create and return.
how do I setup my factory method and register the dependency for the interface? following is what I have roughly.
public class ISampleFactory
{
public ISample GetSample(Type type)
{
// do something here to return an implementation of ISample
}
}
public class SampleA : ISample
{
public void DoSomething();
}
public class SampleB : ISample
{
public void DoSomething();
}
public interface ISample
{
void DoSomethin();
}
Have a look at ninject Contextual Bindings Documentation:
You can either use Named Bindings:
this.Bind<ISample>().To<SampleA>().Named("A");
this.Bind<ISample>().To<SampleB>().Named("B");
or a conditional binding with any of the already available extensions or write your own:
this.Bind<ISample>().To<SampleA>().When(...);
this.Bind<ISample>().To<SampleB>().When(...);
see https://github.com/ninject/ninject/wiki/Contextual-Binding

design pattern query

i have a question regarding design patterns.
suppose i want to design pig killing factory
so the ways will be
1) catch pig
2)clean pig
3) kill pig
now since these pigs are supplied to me by a truck driver
now if want to design an application how should i proceed
what i have done is
public class killer{
private Pig pig ;
public void catchPig(){ //do something };
public void cleanPig(){ };
public void killPig(){};
}
now iam thing since i know that the steps will be called in catchPig--->cleanPig---->KillPig manner so i should have an abstract class containing these methods and an execute method calling all these 3 methods.
but i can not have instance of abstract class so i am confused how to implement this.
remenber i have to execute this process for all the pigs that comes in truck.
so my question is what design should i select and which design pattern is best to solve such problems .
I would suggest a different approach than what was suggested here before.
I would do something like this:
public abstract class Killer {
protected Pig pig;
protected abstract void catchPig();
protected abstract void cleanPig();
protected abstract void killPig();
public void executeKillPig {
catchPig();
cleanPig();
killPig();
}
}
Each kill will extend Killer class and will have to implement the abstract methods. The executeKillPig() is the same for every sub-class and will always be performed in the order you wanted catch->clean->kill. The abstract methods are protected because they're the inner implementation of the public executeKillPig.
This extends Avi's answer and addresses the comments.
The points of the code:
abstract base class to emphasize IS A relationships
Template pattern to ensure the steps are in the right order
Strategy Pattern - an abstract class is as much a interface (little "i") as much as a Interface (capital "I") is.
Extend the base and not use an interface.
No coupling of concrete classes. Coupling is not an issue of abstract vs interface but rather good design.
public abstract Animal {
public abstract bool Escape(){}
public abstract string SaySomething(){}
}
public Wabbit : Animal {
public override bool Escape() {//wabbit hopping frantically }
public override string SaySomething() { return #"What's Up Doc?"; }
}
public abstract class Killer {
protected Animal food;
protected abstract void Catch(){}
protected abstract void Kill(){}
protected abstract void Clean(){}
protected abstract string Lure(){}
// this method defines the process: the methods and the order of
// those calls. Exactly how to do each individual step is left up to sub classes.
// Even if you define a "PigKiller" interface we need this method
// ** in the base class ** to make sure all Killer's do it right.
// This method is the template (pattern) for subclasses.
protected void FeedTheFamily(Animal somethingTasty) {
food = somethingTasty;
Catch();
Kill();
Clean();
}
}
public class WabbitHunter : Killer {
protected override Catch() { //wabbit catching technique }
protected override Kill() { //wabbit killing technique }
protected override Clean() { //wabbit cleaning technique }
protected override Lure() { return "Come here you wascuhwy wabbit!"; }
}
// client code ********************
public class AHuntingWeWillGo {
Killer hunter;
Animal prey;
public AHuntingWeWillGo (Killer aHunter, Animal aAnimal) {
hunter = aHunter;
prey = aAnimal;
}
public void Hunt() {
if ( !prey.Escape() ) hunter.FeedTheFamily(prey)
}
}
public static void main () {
// look, ma! no coupling. Because we pass in our objects vice
// new them up inside the using classes
Killer ElmerFudd = new WabbitHunter();
Animal BugsBunny = new Wabbit();
AHuntingWeWillGo safari = new AHuntingWeWillGo( ElmerFudd, BugsBunny );
safari.Hunt();
}
The problem you are facing refer to part of OOP called polymorphism
Instead of abstract class i will be using a interface, the difference between interface an abstract class is that interface have only method descriptors, a abstract class can have also method with implementation.
public interface InterfaceOfPigKiller {
void catchPig();
void cleanPig();
void killPig();
}
In the abstract class we implement two of three available methods, because we assume that those operation are common for every future type that will inherit form our class.
public abstract class AbstractPigKiller implements InterfaceOfPigKiller{
private Ping pig;
public void catchPig() {
//the logic of catching pigs.
}
public void cleanPig() {
// the logic of pig cleaning.
}
}
Now we will create two new classes:
AnimalKiller - The person responsible for pig death.
AnimalSaver - The person responsible for pig release.
public class AnimalKiller extends AbstractPigKiller {
public void killPig() {
// The killing operation
}
}
public class AnimalSaver extends AbstractPigKiller {
public void killPing() {
// The operation that will make pig free
}
}
As we have our structure lets see how it will work.
First the method that will execute the sequence:
public void doTheRequiredOperation(InterfaceOfPigKiller killer) {
killer.catchPig();
killer.cleanPig();
killer.killPig();
}
As we see in the parameter we do not use class AnimalKiller or AnimalSever. Instead of that we have the interface. Thank to this operation we can operate on any class that implement used interface.
Example 1:
public void test() {
AnimalKiller aKiller = new AnimalKiller();// We create new instance of class AnimalKiller and assign to variable aKiller with is type of `AnimalKilleraKiller `
AnimalSaver aSaver = new AnimalSaver(); //
doTheRequiredOperation(aKiller);
doTheRequiredOperation(aSaver);
}
Example 2:
public void test() {
InterfaceOfPigKiller aKiller = new AnimalKiller();// We create new instance of class AnimalKiller and assign to variable aKiller with is type of `InterfaceOfPigKiller `
InterfaceOfPigKiller aSaver = new AnimalSaver(); //
doTheRequiredOperation(aKiller);
doTheRequiredOperation(aSaver);
}
The code example 1 and 2 are equally in scope of method doTheRequiredOperation. The difference is that in we assign once type to type and in the second we assign type to interface.
Conclusion
We can not create new object of abstract class or interface but we can assign object to interface or class type.

How does a WCF proxy implement ICommunicationObject if it's methods aren't visible?

How does a WCF channel (created via ChannelFactory) implement ICommunicationObject, but doesn't expose the Close() method, for example, unless you cast the proxy to ICommunicationObject? Does that make sense?
I got to thinking about that on the way home today and couldn't figure it out in my head. Maybe I'm asking the wrong question? Maybe I'm asking a stupid question? :)
Is it some kind of ninja trick?
This is done via Explicit Interface Implementation.
Suppose you have an interface, like so:
public interface IFoo
{
void Foo();
}
You can implement this normally:
public class Bar : IFoo
{
public void Foo() {} // Implicit interface implementation
}
Alternatively, you can implement the interface members explicitly, which requires the cast:
public class Baz : IFoo
{
void IFoo.Foo() {} // This will require casting the object to IFoo to call
}
This can be very useful at times. For example, it is often done to implement IDisposable in classes where the preferred API would be to call .Close(), for example. By implementing IDisposable explicitly, you "hide" the Dispose() method, but still allow the class instance to be used via a using statement.
The Channel class implements the ICommunicationObject interface explicitly. Here's an example demonstrating the difference between explicit interface implementation and implicit interface implementation:
internal interface IExample
{
void DoSomething();
}
class ImplicitExample : IExample
{
public void DoSomething()
{
// ...
}
}
class ExplicitExample : IExample
{
void IExample.DoSomething()
{
// ...
}
}
class Consumer
{
void Demo()
{
var explicitExample = new ExplicitExample();
// explicitExample.DoSomething(); <-- won't compile
((IExample)explicitExample).DoSomething(); // <-- compiles
var implicitExample = new ImplicitExample();
implicitExample.DoSomething(); // <-- compiles
}
}
Here is a link to the an MSDN article on this subject: http://msdn.microsoft.com/en-us/library/ms173157.aspx

C# OO Design: case when only ONE abstract method is needed

I have 2 classes that have the exact same logic/workflow, except in one method.
So, I created a abstract base class where the method that differs is declared as abstract.
Below is some sample code to demonstrate my design; can anyone offer suggestions on a better approach or am I heading in the right direction.
I didn't use an interface because both derived classes B and C literally share most of the logic. Is there a better way to do what I am doing below via dependency injection?
public abstract class A
{
public void StageData()
{
// some logic
DoSomething();
}
public void TransformData();
public abstract DoSomething();
}
public class B : A
{
public override void DoSomething()
{
// Do Something!
}
}
public class C : A
{
public override void DoSomething()
{
// Do Something!
}
}
There is nothing wrong with what you have done. To introduce dependency injection into this design would be messy and overkill - you would have to pass in a delegate:
public class ABC
{
public ABC(Action z)
{
_doSomethingAction = z;
}
public void DoSomething()
{
_doSomthingAction.Invoke();
}
private Action _doSomthingAction;
}
There would be few reasons why you want to use this approach - one would be if you needed to execute a callback. So stick with the pattern you have, don't try to overcomplicate things.

Design pattern to save/load an object in various format

I have an object: X, that can be saved or loaded in various formats: TXT, PDF, HTML, etc..
What is the best way to manage this situation? Add a pair of method to X for each format, create a new Class for each format, or exists (as I trust) a better solution?
I'd choose the strategy pattern. For example:
interface XStartegy {
X load();
void save(X x);
}
class TxtStrategy implements XStartegy {
//...implementation...
}
class PdfStrategy implements XStartegy {
//...implementation...
}
class HtmlStrategy implements XStartegy {
//...implementation...
}
class XContext {
private XStartegy strategy;
public XContext(XStartegy strategy) {
this.strategy = strategy;
}
public X load() {
return strategy.load();
}
public void save(X x) {
strategy.save(x);
}
}
I agree with #DarthVader , though in Java you'd better write
public class XDocument implements IDocument { ...
You could also use an abstract class, if much behavior is common to the documents, and in the common methods of base class call an abstract save(), which is only implemented in the subclasses.
I would go with Factory pattern. It looks like you can use inheritance/polymorphism with generics. You can even do dependency injection if you go with the similar design as follows.
public interface IDocument
{
void Save();
}
public class Document : IDocument
{
}
public class PdfDocument: IDocument
{
public void Save(){//...}
}
public class TxtDocument: IDocument
{
public void Save(){//...}
}
public class HtmlDocument : IDocument
{
public void Save(){//...}
}
then in another class you can do this:
public void SaveDocument(T document) where T : IDocument
{
document.save();
}
It depends on your objects, but it is possible, that visitor pattern (http://en.wikipedia.org/wiki/Visitor_pattern) can be used here.
There are different visitors (PDFVisitor, HHTMLVisitor etc) that knows how to serialize parts of your objects that they visit.
I would instead suggest the Strategy pattern. You're always saving and restoring, the only difference is how you do it (your strategy). So you have save() and restore() methods that defer to various FormatStrategy objects you can plug and play with at run time.