Should an API assign and return a reference number for newly created resources? - api

I am building a RESTful API where users may create resources on my server using post requests, and later reference them via get requests, etc. One thing I've had trouble deciding on is what IDs the clients should have. I know that there are many ways to do what I'm trying to accomplish, but I'd like to go with a design which follows industry conventions and best design practices.
Should my API decide on the ID for each newly created resource (it would most likely be the primary key for the resource assigned by the database)? Or should I allow users to assign their own reference numbers to their resources?
If I do assign a reference number to each new resource, how should this be returned to the client? The API has some endpoints which allow for bulk item creation, so I would need to list out all of the newly created resources on every response?
I'm conflicted because allowing the user to specify their own IDs is obviously a can of worms - I'd need to verify each ID hasn't been taken, makes database queries a lot weirder as I'd be joining on reference# and userID rather than foreign key. On the other hand, if I assign IDs to each resource it requires clients to have to build some type of response parser and forces them to follow my imposed conventions.

Why not do both? Let the user create there reference and you create your own uid. If the users have to login then you can use there reference and userid unique key. I would also give the uid created back if not needed the client could ignore it.

It wasn't practical (for me) to develop both of the above methods into my application, so I took a leap of faith and allowed the user to choose their own IDs. I quickly found that this complicated development so much that it would have added weeks to my development time, and resulted in much more complex and slow DB queries. So, early on in the project I went back and made it so that I just assign IDs for all created resources.
Life is simple now.
Other popular APIs that I looked at, such as the Instagram API, also assign IDs to certain created resources, which is especially important if you have millions of users who can interact with each-other's resources.

Related

WorkFront / AtTask API querying secondary objects

I'm using the WorkFront / AtTask API and when looking up Tasks, I'd like to filter them down to the Projects that contain specific Roles.
using /TASK/search/?fields=project:roles it will show me the Roles, but then I'm not sure how to filter on those.
Accessing a tertiary object directly (fails)
I tried /TASK/search/?project:roles:ID=aaaaaaa but the API returns (422) Unprocessable Entity.
Access from the parent object (works)
task -> project -> /PROJ/search/?roles:ID=aaaaaaa works, but involves sub-queries to the API that are costly and slow.
Access from secondary object's ID fields (works)
/TASK/search/?project:ownerID=bbbbbbb since it references a field of a secondary object and not yet another object. But I've only been able to make this work with single-instance references and don't know how to access the ID fields of collections without referencing them as objects.
So how could I filter or access down to a secondary object's collection? I can view them in a single API query, but can't seem to filter.
Task > It's Project > filter by Role
This functionality is not available in Workfront, neither through the API nor through built-in tools like Reports. This is due to a constraint on the database side of things. After seeing this question I spoke with my enterprise support team at Workfront and received confirmation of this from the DBAs.
The solution that you provided is the best you can do - split this query into the front and back half of your parameters and filter results within your code.
The best solution I can think of thus far is:
Pull the list of acceptable projects based on role.
/PROJ/search/?roles:ID=aaaaaa&...
Save the list of projects in memory
Pull the list of Tasks in question
/TASK/search/?...
Remove the tasks that don't have a project ID from step 2
This way it's only 2 queries and the project query should have a minimal impact in terms of size and number of entries.

RESTfully creating object graphs

I'm trying to wrap my head around how to design a RESTful API for creating object graphs. For example, think of an eCommerce API, where resources have the following relationships:
Order (the main object)
Has-many Addresses
Has-many Order Line items (what does the order consist of)
Has-many Payments
Has-many Contact Info
The Order resource usually makes sense along with it's associations. In isolation, it's just a dumb container with no business significance. However, each of the associated objects has a life of it's own and may need to be manipulated independently, eg. editing the shipping address of an order, changing the contact info against an order, removing a line-item from an order after it has been placed, etc.
There are two options for designing the API:
The Order API endpoint intelligently creates itself AND its associated resources by processing "nested resource" in the content sent to POST /orders
The Order resource only creates itself and the client has to make follow-up POST requests to newly created endpoints, like POST /orders/123/addresses, PUT /orders/123/line-items/987, etc.
While the second option is simpler to implement at the server-side, it makes the client do extra work for 80% of the use-cases.
The first option has the following open questions:
How does one communicate the URL for the newly created resource? The Location header can communicate only one URL, however the server would've potentially created multiple resources.
How does one deal with errors? What if one of the associons has an error? Do we reject the entire object graph? How is that error communicated to the client?
What's the RESTful + pragmatic way of dealing with this?
How I handle this is the first way. You should not assume that a client will make all the requests it needs to. Create all the entities on the one request.
Depending on your use case you may also want to enforce an 'all-or-nothing' approach in creating the entities; ie, if something falls, everything rolls back. You can do this by using a transaction on your database (which you also can't do if everything is done through separate requests). Determining if this is the behavior you want is very specific to your situation. For instance, if you are creating an order statement you may which to employ this (you dont want to create an order that's missing items), however if you are uploading photos it may be fine.
For returning the links to the client, I always return a JSON object. You could easily populate this object with links to each of the resources created. This way the client can determine how to behave after a successful post.
Both options can be implemented RESTful. You ask:
How does one communicate the URL for the newly created resource? The Location header can communicate only one URL, however the server would've potentially created multiple resources.
This would be done the same way you communicate linkss to other Resources in the GET case. Use link elements or what ever your method is to embed the URL of a Resource into a Representation.

How do I store 3rd-party API data after user interaction?

The project that I'm currently on is consuming a large volume of 3rd-party information exposed via APIs. These datasets are constantly changing and in the order of millions of entries for each.
Users are to denote their favorites and recall that data when they need it. An example may be that the user wants to "bookmark" an inventory level to their "analyze later" list.
My current thinking is that during actions like searching users are presented with "live" data from the 3rd parties. If they flag something they're interested in I copy that data to a database I control. Subsequent views of that info are served from my database, not the 3rd party, since the 3rd party entry may change (or cease to exist entirely).
Is this good API practice? What object keys are sent to the client-facing application on search? The 3rd party keys? Or do I preprocess the results of a search and determine which items I have locally, thus returning local keys in those instances? Or do I completely abstract the 3rd party sources and generate unique local keys for every returned item, which is then subsequently used if someone saves [that seems REALLY heavy, tho]? Or do I put that processing off and do the lookup as to whether something exists locally to after someone bookmarks something?

REST best practices: should a store also return metadata?

I'm building my first REST API (at least trying) for a personal project.
In this project there are resources called players which hold can be in a team. According to REST API design rulebook a resource should be made either to be a document or a store and one should keeps these roles as segregated as possible.
Yet I would like to append some metadata to the team resource, eg the date the team was founded. Is it okay then for GET /teams/atlanta to return this metadata (making it a document) alongside the list of players in the team (making it a store).
Is this a good idea? If so why? If not why not and how to solve this better?
I know there are no rules to developing a REST API, but there are good practices and I would like to adhere to those. Please also not that this is really my first REST API so pardon my ignorance if there is any.
I would recommend having GET /teams/atlanta return just the information about the team, such as the founding date that you mention, and then having GET /teams/atlanta/players return the list of players for that team. These distinctions become more important when you are presenting an API that uses HTTP methods other than GET.
For example, if you wanted to add a player to a team - this would be a lot easier if you could just POST a player object to /teams/atlanta/players than if you had to PUT the whole team object to /teams/atlanta every time you wanted to add one individual player.
If your API only allows retrieval of data, and if it is for a specific client application, there is an argument for combining all the team data into one object to save the client having to make additional requests for the data, but bear in mind that it is less flexible.
Your application may want to display a list of teams by calling GET /teams but you probably wouldn't want all of the player information included in each object in the list as this is quite a lot of data, but if GET /teams/atlanta returns player information then it would be inconsistent not to include it in the list version too.
I would personally favour splitting up the resources as I've suggested, and live with the fact the client may need to make an extra request or two.

The REST-way to check/uncheck like/unlike favorite/unfavorite a resource

Currently I am developing an API and within that API I want the signed in users to be able to like/unlike or favorite/unfavorite two resources.
My "Like" model (it's a Ruby on Rails 3 application) is polymorphic and belongs to two different resources:
/api/v1/resource-a/:id/likes
and
/api/v1/resource-a/:resource_a_id/resource-b/:id/likes
The thing is: I am in doubt what way to choose to make my resources as RESTful as possible. I already tried the next two ways to implement like/unlike structure in my URL's:
Case A: (like/unlike being the member of the "resource")
PUT /api/v1/resource/:id/like maps to Api::V1::ResourceController#like
PUT /api/v1/resource/:id/unlike maps to Api::V1::ResourceController#unlike
and case B: ("likes" is a resource on it's own)
POST /api/v1/resource/:id/likes maps to Api::V1::LikesController#create
DELETE /api/v1/resource/:id/likes maps to Api::V1::LikesController#destroy
In both cases I already have a user session, so I don't have to mention the id of the corresponding "like"-record when deleting/"unliking".
I would like to know how you guys have implemented such cases!
Update April 15th, 2011: With "session" I mean HTTP Basic Authentication header being sent with each request and providing encrypted username:password combination.
I think the fact that you're maintaining application state on the server (user session that contains the user id) is one of the problems here. It's making this a lot more difficult than it needs to be and it's breaking a REST's statelessness constraint.
In Case A, you've given URIs to operations, which again is not RESTful. URIs identify resources and state transitions should be performed using a uniform interface that is common to all resources. I think Case B is a lot better in this respect.
So, with these two things in mind, I'd propose something like:
PUT /api/v1/resource/:id/likes/:userid
DELETE /api/v1/resource/:id/likes/:userid
We also have the added benefit that a user can only register one 'Like' (they can repeat that 'Like' as many times as they like, and since the PUT is idempotent it has the same result no matter how many times it's performed). DELETE is also idempotent, so if an 'Unlike' operation is repeated many times for some reason then the system remains in a consistent state. Of course you can implement POST in this way, but if we use PUT and DELETE we can see that the rules associated with these verbs seem to fit our use-case really well.
I can also imagine another useful request:
GET /api/v1/resource/:id/likes/:userid
That would return details of a 'Like', such as the date it was made or the ordinal (i.e. 'This was the 50th like!').
case B is better, and here have a good sample from GitHub API.
Star a repo
PUT /user/starred/:owner/:repo
Unstar a repo
DELETE /user/starred/:owner/:repo
You are in effect defining a "like" resource, a fact that a user resource likes some other resource in your system. So in REST, you'll need to pick a resource name scheme that uniquely identifies this fact. I'd suggest (using songs as the example):
/like/user/{user-id}/song/{song-id}
Then PUT establishes a liking, and DELETE removes it. GET of course finds out if someone likes a particular song. And you could define GET /like/user/{user-id} to see a list of the songs a particular user likes, and GET /like/song/{song-id} to see a list of the users who like a particular song.
If you assume the user name is established by the existing session, as #joelittlejohn points out, and is not part of the like resource name, then you're violating REST's statelessness constraint and you lose some very important advantages. For instance, a user can only get their own likes, not their friends' likes. Also, it breaks HTTP caching, because one user's likes are indistinguishable from another's.