Realtime audio thread issues (iOS) - objective-c

I have the following setup:
Core Audio Callback -> Circular Buffer -> libLAME -> Circular Buffer -> libShout
This all works fine until I start doing any intensive work at which point the thread doing the encoding (libLAME) and the thread doing the streaming (libShout) is throttled and things begin to go down hill very quickly (basically the server gets audio every 2-5 sec rather than every 200 msec or less like it should and the stream becomes garbled).
I have tried the following:
Encoding and Streaming on the one thread
Encoding and Streaming on their own threads
Setting the priority of the thread(s) to high
Setting the thread(s) to realtime threads (which appears to fix it for the most part except for the fact that everything else is then throttled way too much)
I am pretty much using the stock standard example code for libLAME and libShout.
i.e. Set them up for the audio format and server, then loop whilst data is available in the buffers.
What I don't understand is why the threads are being throttled when the CPU usage is maxing out at 80% and the threads aren't blocking whilst waiting on the other thread.
Any help with this would be greatly appreciated.

Related

Clear WebRTC Data Channel queue

I have been trying to use WebRTC Data Channel for a game, however, I am unable to consistently send live player data without hitting the queue size limit (8KB) after 50-70 secs of playing.
Sine the data is required to be real-time, I have no use for data that comes out of order. I have initialized the data channel with the following attributes:
negotiated: true,
id: id,
ordered: true,
maxRetransmits: 0,
maxPacketLifetime: 66
The MDN Docs said that the buffer cannot be altered in any way.
Is there anyway I can consistently send data without exceeding the buffer space? I don't mind purging the buffer space as it only contains data that has been clogged up over time.
NOTE: The data is transmitting until the buffer size exceeds the 8KB space.
EDIT: I forgot to add that this issue is only occurring when the two sides are on different networks. When both are within the same LAN, there is no buffering (since higher bandwidth, I presume). I tried to add multiple Data Channels (8 in parallel). However, this only increased the time before the failure occurred again. All 8 buffers were full. I also tried creating a new channel each time the buffer was close to being full and switched to the new DC while closing the previous one that was full, but I found out the hard way (reading Note in MDN Docs) that the buffer space is not released immediately, rather tries to transmit all data in the buffer taking away precious bandwidth.
Thanks in advance.
The maxRetransmits value is ignored if the maxPacketLifetime value is set; thus, you've configured your channel to resend packets for up to 66ms. For your application, it is probably better to use a pure unreliable channel by setting maxPacketLifetime to 0.
As Sean said, there is no way to flush the queue. What you can do is to drop packets before sending them if the channel is congested:
if(dc.bufferedAmount > 0)
return;
dc.send(data);
Finally, you should realise that buffering may happen in the network as well as at the sender: any router can buffer packets when it is congested, and many routers have very large buffers (this is called BufferBloat). The WebRTC stack should prevent you from buffering too much data in the network, but if WebRTC's behaviour is not aggressive enough for your needs, you will need to add explicit feedback from the sender to the receiver in order to avoid having too many packets in flight.
I don't believe you can flush the outbound buffer, you will probably need to watch the bufferedAmount and adjust what you are sending if it grows.
Maybe handle the retransmissions yourselves and discard old data if needed? WebRTC doesn't surface the SACKs from SCTP. So I think you will need to implement something yourself.
It's an interesting problem. Would love to hear the WebRTC W3C WorkGroup takes on it if exposing more info would make things easier for you.

Reduce Freeswitch video conference latency

We're experimenting with a Freeswitch based multiparty video conferencing solution (Zoom like). The users are connecting via WebRTC (Verto clients) and the streams are all muxed and displayed on the canvas (mod_conference in mux mode). It works OK, but we notice high media latency for mixed output and this makes it very difficult to have a real-time dialogue. This is not load related, even with only 1 caller watching himself on the canvas (the mux conference output), it takes almost 1 second to see a local move being reflected on the screen (e.g. if I raise my hand I can see it happening on the screen after almost 1 second ). This is obviously the roundtrip delay, but after discarding the intrinsic network latency (measured to be about 100 ms roundtrip) there seem to be around 800-900 ms added latency. There's no TURN relaying involved. It seems this is being introduced along the buffering/ transcoding/ muxing pipeline. Any suggestions please what to try to reduce the latency? What sort of latency should we expect, what's your experience, has anyone deployed a Freeswitch video conferencing with acceptable latency for bidirectional, real time conversations? Ultimately I'm trying to understand if Freeswitch can be used for a multiparty real time video conversation or I should give up look for something else. Thanks!

Getting HLS livestream in sync across devices

We are currently using ExoPlayer for one of our applications, which is very similar to the HQ Trivia app, and we use HLS as the streaming protocol.
Due to the nature of the game, we are trying to keep all the viewers of this stream to have the same latency, basically to keep them in sync.
We noticed that with the current backend configuration the latency is somewhere between 6 and 10 seconds. Based on this fact, we assumed that it would be safe to “force” the player to play at a bigger delay (15 seconds, further off the live edge), this way achieving the same (constant) delay across all the devices.
We’re using EXT-X-PROGRAM-DATE-TIME tag to get the server time of the currently playing content and we also have a master clock with the current time (NTP). We’re constantly comparing the 2 clocks to check the current latency. We’re pausing the player until it reaches the desired delay, then we’re resuming the playback.
The problem with this solution is that the latency might get worse (accumulating delay) over time and we don’t have other choice than restarting the playback and redo the steps described above if the delay gets too big (steps over a specified threshold). Before restarting the player we’re also trying to slightly increase the playback speed until it reaches the specified delay.
The exoPlayer instance is setup with a DefaultLoadControl, DefaultRenderersFactory, DefaultTrackSelector and the media source uses a DefaultDataSourceFactory.
The server-side configuration is as follows:
cupertinoChunkDurationTarget: 2000 (default: 10000)
cupertinoMaxChunkCount: 31 (default: 10)
cupertinoPlaylistChunkCount: 15 (default: 3)
My first question would be if this is even achievable with a protocol like HLS? Why is the player drifting away accumulating more and more delay?
Is there a better setup for the exoPlayer instance considering our specific use case?
Is there a better way to achieve a constant playback delay across all the playing devices? How important are the parameters on the server side in trying to achieve such a behaviour?
I would really appreciate any kind of help because I have reached a dead-end. :)
Thanks!
The only sollution for this is provided by:
https://netinsight.net/product/sye/
Their sollution includes frame accurate sync with no drift and stateful ABR. This probably can’t be done with http based protocols hence their sollution is built upon UDP transport.

RestKit network limits blocks other calls when parallel requests are running

we are facing a problem.
we have background requests that are downloading files constantly (up to 5MB each file). meanwhile, we have a UI that most navigations require REST calls.
we limited the number of background downloads so it won't suffocate the operationQueue that RESTkit uses.
when several files are downloaded in background, we see the network usage with 1->2 MB (which is understandable).
The problem is: the user navigates through the app, and each navigation calls a quick REST call that should return very little data. but because of the background downloads, the UI call is taking forever (~10 seconds).
Priority did not help, i saw that the UI call i make instantly is handled by the operation queue (because we limited the downloads limit and the NSOperationQueue had more space to fulfill other requests.
when we limited the concurrent REST download calls to 5 - the REST calls from the UI took 10 seconds.
when we limited the concurrent REST download calls to 2 - everything worked fine.
the issue here is that because we let only 2 downloads occur in the background - the whole background operation of downloading files will take forever.
the best scenario would be that every UI call would be considered as most important network-wise and even pause the background operations and let only the UI call to be handled - then resume the background operation - but i'm not sure it's possible.
any other idea to address this issue?
You could use 2 RKObjectManagers so that you have 2 separate queues, then use one for 'UI' and the other for 'background'. On top of that you can set the concurrent limits for each queue differently and you could suspend the background queue. Note that suspending the queue doesn't mean already running operations are paused, it just stops new operations from being started.
By doing this you can gain some control, but better options really are to limit the data flow, particularly when running on a mobile data network, and to inform the user what is happening so they can accept the situation or pause it till later.

Streaming audio. How does 10 seconds of audio are loaded in 2 seconds?

Dunno if that the right place to post the question.
However out of curiosity, how does 10 seconds are loaded in 2 seconds? I could have understand if an audio being loaded to the fileserver and the client is loading it afterwards. However lifestream that comes from RTSP I have got two answers,
It's either loads played content
Or the internet lifestream is behind real stream...
Anyway I would like to hear your aswers and guidance on this topic. Thanks
It's the second option. If you would stream audio in "real time" without any delay, you would have serious problems when the connection is lost or data is delayed, for example, for 100ms. Than the user wouldn't hear anything for 100ms, which would be pretty annoying. This especially happens with mobile connections, which have much higher error rates and while you move have a hard time to keep a stable connection.
Usually the acutal playback is delayed and the next seconds are buffered. When the connection is down and comes back in the buffered time frame, than the user doesn't notice that the connection was lost. In you example the connection can be lost for up to 8 seconds without any problems.