I have an rsa.PublicKey object (retrieved from an rsa.PrivateKey). And I'm trying to export it into the OpenSSH format, to display it in a web page.
I've noticed the go.crypto/ssh library, which seems to be doing this.
And there's the discussion about it's implementation (it's actually exactly what I need to do)
Unfortunately, I'm getting a bit stuck, as the byte array returned is in an unknown encoding and I can't just transform it to a string to display it.
func PublicKey(rsaKey rsa.PublicKey) string {
key, _ := ssh.NewPublicKey(&rsaKey)
marshalled := ssh.MarshalPublicKey(key)
return string(marshalled)
}
This seems to work as it adds the ssh-rsa at the beginning of the string. However, most characters aren't recognized.
Here's the bytes array I'm retrieving for a lambda public key:
[0 0 0 7 115 115 104 45 114 115 97 0 0 0 3 1 0 1 0 0 0 65 0 178 153 15 73 196 125 250 140 212 0 174 106 77 27 138 59 106 19 100 43 35 242 139 0 59 251 151 121 10 222 154 76 200 43 139 42 129 116 125 222 192 139 98 150 229 58 8 195 49 104 126 242 92 75 244 147 107 161 192 230 4 30 157 21]
Any hint on properly displaying this bytes array as a string?
Marshaling a key is for the wire format. You just need to base64 encode the bytes:
base64.StdEncoding.EncodeToString(marshalled) + "\n"
Related
I have df1 which has three columns (loadgroup, cartons, blocks) like this
loadgroup
cartons
blocks
cartonsPercent
blocksPercent
1
2269
14
26%
21%
2
1168
13
13%
19%
3
937
8
11%
12%
4
2753
24
31%
35%
5
1686
9
19%
13%
total(sum of column)
8813
68
100%
100%
The interpretation is like this: out of df1 26% cartons which is also 21% of blocks are assigned to loadgroup 1, etc. we can assume blocks are 1 to 68, cartons are 1 to 8813.
I also have df2 which also has cartons and blocks columns. but does not have loadgroup.
My goal is to assign loadgroup (1-5 as well) to df2 (100 blocks 29608 cartons in total), but keep the proportions, for example, for df2, 26% cartons 21% blocks assign loadgroup 1, 13% cartons 19% blocks assign loadgroup 2, etc.
df2 is like this:
block
cartons
0
533
1
257
2
96
3
104
4
130
5
71
6
68
7
87
8
99
9
51
10
291
11
119
12
274
13
316
14
87
15
149
16
120
17
222
18
100
19
148
20
192
21
188
22
293
23
120
24
224
25
449
26
385
27
395
28
418
29
423
30
244
31
327
32
337
33
249
34
528
35
528
36
494
37
540
38
368
39
533
40
614
41
462
42
350
43
618
44
463
45
552
46
397
47
401
48
397
49
365
50
475
51
379
52
541
53
488
54
383
55
354
56
760
57
327
58
211
59
356
60
552
61
401
62
320
63
368
64
311
65
421
66
458
67
278
68
504
69
385
70
242
71
413
72
246
73
465
74
386
75
231
76
154
77
294
78
275
79
169
80
398
81
227
82
273
83
319
84
177
85
272
86
204
87
139
88
187
89
263
90
90
91
134
92
67
93
115
94
45
95
65
96
40
97
108
98
60
99
102
total 100 blocks
29608 cartons
I want to add loadgroup column to df2, try to keep those proportions as close as possible. How to do it please? Thank you very much for the help.
I don't know how to find loadgroup column based on both cartons percent and blocks percent. But generate random loadgroup based on either cartons percent or blocks percent is easy.
Here is what I did. I generate 100,000 seeds first, then for each seed, I add column loadgroup1 based on cartons percent, loadgroup2 based on blocks percent, then calculate both percentages, then compare with df1 percentages, get absolute difference, record it. For these 100,000 seeds, I take the minimum difference one as my solution, which is sufficient for my job.
But this is not the optimal solution, and I am looking for quick and easy way to do this. Hope somebody can help.
Here is my code.
df = pd.DataFrame()
np.random.seed(10000)
seeds = np.random.randint(1, 1000000, size = 100000)
for i in range(46530, 46537):
print(seeds[i])
np.random.seed(seeds[i])
df2['loadGroup1'] = np.random.choice(df1.loadgroup, len(df2), p = df1.CartonsPercent)
df2['loadGroup2'] = np.random.choice(df1.loadgroup, len(df2), p = df1.blocksPercent)
df2.reset_index(inplace = True)
three = pd.DataFrame(df2.groupby('loadGroup1').agg(Cartons = ('cartons', 'sum'), blocks = ('block', 'count')))
three['CartonsPercent'] = three.Cartons/three.Cartons.sum()
three['blocksPercent'] = three.blocks/three.blocks.sum()
four = df1[['CartonsPercent','blocksPercent']] - three[['CartonsPercent','blocksPercent']]
four = four.abs()
subdf = pd.DataFrame({'i':[i],'Seed':[seeds[i]], 'Percent':['CartonsPercent'], 'AbsDiff':[four.sum().sum()]})
df = pd.concat([df,subdf])
three = pd.DataFrame(df2.groupby('loadGroup2').agg(Cartons = ('cartons', 'sum'), blocks = ('block', 'count')))
three['CartonsPercent'] = three.Cartons/three.Cartons.sum()
three['blocksPercent'] = three.blocks/three.blocks.sum()
four = df1[['CartonsPercent','blocksPercent']] - three[['CartonsPercent','blocksPercent']]
four = four.abs()
subdf = pd.DataFrame({'i':[i],'Seed':[seeds[i]], 'Percent':['blocksPercent'], 'AbsDiff':[four.sum().sum()]})
df = pd.concat([df,subdf])
df.sort_values(by = 'AbsDiff', ascending = True, inplace = True)
df = df.head(10)
Actually the first row of df will tell me the seed I am looking for, I kept 10 rows just for curiosity.
Here is my solution.
block
cartons
loadgroup
0
533
4
1
257
1
2
96
4
3
104
4
4
130
4
5
71
2
6
68
1
7
87
4
8
99
4
9
51
4
10
291
4
11
119
2
12
274
2
13
316
4
14
87
4
15
149
5
16
120
3
17
222
2
18
100
2
19
148
2
20
192
3
21
188
4
22
293
1
23
120
2
24
224
4
25
449
1
26
385
5
27
395
3
28
418
1
29
423
4
30
244
5
31
327
1
32
337
5
33
249
4
34
528
1
35
528
1
36
494
5
37
540
3
38
368
2
39
533
4
40
614
5
41
462
4
42
350
5
43
618
4
44
463
2
45
552
1
46
397
3
47
401
3
48
397
1
49
365
1
50
475
4
51
379
1
52
541
1
53
488
2
54
383
2
55
354
1
56
760
5
57
327
4
58
211
2
59
356
5
60
552
4
61
401
1
62
320
1
63
368
3
64
311
3
65
421
2
66
458
5
67
278
4
68
504
5
69
385
4
70
242
4
71
413
1
72
246
2
73
465
5
74
386
4
75
231
1
76
154
4
77
294
4
78
275
1
79
169
4
80
398
4
81
227
4
82
273
1
83
319
3
84
177
4
85
272
5
86
204
3
87
139
1
88
187
4
89
263
4
90
90
4
91
134
4
92
67
3
93
115
3
94
45
2
95
65
2
96
40
4
97
108
2
98
60
2
99
102
1
Here are the summaries.
loadgroup
cartons
blocks
cartonsPercent
blocksPercent
1
7610
22
26%
22%
2
3912
18
13%
18%
3
3429
12
12%
12%
4
9269
35
31%
35%
5
5388
13
18%
13%
It's very close to my target though.
I am working with the following code:
url = 'https://raw.githubusercontent.com/dothemathonthatone/maps/master/fertility.csv'
df = pd.read_csv(url)
year regional_schlüssel Aus15 Deu15 Aus16 Deu16 Aus17 Deu17 Aus18 Deu18 ... aus36 aus37 aus38 aus39 aus40 aus41 aus42 aus43 aus44 aus45
0 2000 5111000 0 4 8 25 20 45 56 89 ... 935 862 746 732 792 660 687 663 623 722
1 2000 5113000 1 1 4 14 13 33 19 48 ... 614 602 498 461 521 470 393 411 397 400
2 2000 5114000 0 11 0 5 2 13 7 20 ... 317 278 265 235 259 228 204 173 213 192
3 2000 5116000 0 2 2 7 3 28 13 26 ... 264 217 206 207 197 177 171 146 181 169
4 2000 5117000 0 0 3 1 2 4 4 7 ... 135 129 118 116 128 148 89 110 124 83
I would like to create a new set of columns fertility_deu15, ..., fertility_deu45 and fertility_aus15, ..., fertility_aus45 such that aus15 / Aus15 = fertiltiy_aus15 and deu15/ Deu15 = fertility_deu15 for each ausi and Ausj where j == i \n [15-45] and deui:Deuj where j == i \n [15-45]
I'm not sure what is up with that data but we need to fix it to make it numeric. I'll end up doing that while filtering
numerator = df.filter(regex='^[a-z]+\d+$') # Lower case ones
numerator = numerator.apply(pd.to_numeric, errors='coerce') # Fix numbers
denominator = df.filter(regex='^[A-Z][a-z]+\d+$').rename(columns=str.lower)
denominator = denominator.apply(pd.to_numeric, errors='coerce')
numerator.div(denominator).add_prefix('fertility_')
have a schema with 9 fields and i want to take only two fields(6,7 i.e $5,$6) and i want to calculate the average of $5 and i want to sort the $6 in ascending order so how to do this task can some one help me.
Input Data:
N368SW 188 170 175 17 -1 MCO MHT 1142
N360SW 100 115 87 -10 5 MCO MSY 550
N626SW 114 115 90 13 14 MCO MSY 550
N252WN 107 115 84 -10 -2 MCO MSY 550
N355SW 104 115 85 -1 10 MCO MSY 550
N405WN 113 110 96 14 11 MCO ORF 655
N456WN 110 110 92 24 24 MCO ORF 655
N743SW 144 155 124 7 18 MCO PHL 861
N276WN 142 150 129 -2 6 MCO PHL 861
N369SW 153 145 134 30 22 MCO PHL 861
N363SW 151 145 137 5 -1 MCO PHL 861
N346SW 141 150 128 51 60 MCO PHL 861
N785SW 131 145 118 -15 -1 MCO PHL 861
N635SW 144 155 127 -6 5 MCO PHL 861
N242WN 298 300 276 68 70 MCO PHX 1848
N439WN 130 140 111 -4 6 MCO PIT 834
N348SW 140 135 124 7 2 MCO PIT 834
N672SW 136 135 122 9 8 MCO PIT 834
N493WN 151 160 136 -9 0 MCO PVD 1073
N380SW 170 155 155 13 -2 MCO PVD 1073
N705SW 164 160 147 6 2 MCO PVD 1073
N233LV 157 160 143 1 4 MCO PVD 1073
N786SW 156 160 139 6 10 MCO PVD 1073
N280WN 160 160 146 1 1 MCO PVD 1073
N282WN 104 95 81 10 1 MCO RDU 534
N694SW 89 100 77 3 14 MCO RDU 534
N266WN 94 95 82 9 10 MCO RDU 534
N218WN 98 100 77 12 14 MCO RDU 534
N355SW 47 50 35 15 18 MCO RSW 133
N388SW 44 45 30 37 38 MCO RSW 133
N786SW 46 50 31 4 8 MCO RSW 133
N707SA 52 50 33 10 8 MCO RSW 133
N795SW 176 185 153 -9 0 MCO SAT 1040
N402WN 176 185 161 4 13 MCO SAT 1040
N690SW 123 130 107 -1 6 MCO SDF 718
N457WN 135 130 105 20 15 MCO SDF 718
N720WN 144 155 131 13 24 MCO STL 880
N775SW 147 160 135 -6 7 MCO STL 880
N291WN 136 155 122 96 115 MCO STL 880
N247WN 144 155 127 43 54 MCO STL 880
N748SW 179 185 159 -4 2 MDW ABQ 1121
N709SW 176 190 158 21 35 MDW ABQ 1121
N325SW 110 105 97 36 31 MDW ALB 717
N305SW 116 110 90 107 101 MDW ALB 717
N403WN 145 165 128 -6 14 MDW AUS 972
N767SW 136 165 125 59 88 MDW AUS 972
N730SW 118 120 100 28 30 MDW BDL 777
i have written the code like this but it is not working properly:
a = load '/path/to/file' using PigStorage('\t');
b = foreach a generate (int)$5 as field_a:int,(chararray)$6 as field_b:chararray;
c = group b all;
d = foreach c generate b.field_b,AVG(b.field_a);
e = order d by field_b ASC;
dump e;
I am facing error at order by:
grunt> a = load '/user/horton/sample_pig_data.txt' using PigStorage('\t');
grunt> b = foreach a generate (int)$5 as fielda:int,(chararray)$6 as fieldb:chararray;
grunt> describe #;
b: {fielda: int,fieldb: chararray}
grunt> c = group b all;
grunt> describe #;
c: {group: chararray,b: {(fielda: int,fieldb: chararray)}}
grunt> d = foreach c generate b.fieldb,AVG(b.fielda);
grunt> e = order d by fieldb ;
2017-01-05 15:51:29,623 [main] ERROR org.apache.pig.tools.grunt.Grunt - ERROR 1025:
<line 6, column 15> Invalid field projection. Projected field [fieldb] does not exist in schema: :bag{:tuple(fieldb:chararray)},:double.
Details at logfile: /root/pig_1483631021021.log
I want output like(not related to input data):
(({(Bharathi),(Komal),(Archana),(Trupthi),(Preethi),(Rajesh),(siddarth),(Rajiv) },
{ (72) , (83) , (87) , (75) , (93) , (90) , (78) , (89) }),83.375)
If you have found the answer, best practice is to post it so that others referring to this can have a better understanding.
Note: I've already read the very good answer to this question, but it doesn't answer my issues.
I'm attempting to implement SCRAM-SHA1 authentication standard, as specified by RFC 5802, in Common Lisp. I am running into issues when it comes to generating the client final response message.
This is the code of the function (the rest of the functions are available here) -- this is an attempt to implement the algorithm as described on page 7 of the RFC:
(defun gen-client-final-message
(&key password client-nonce client-initial-message server-response)
(check-type client-nonce string)
(check-type client-initial-message string)
(check-type server-response string)
(check-type password string)
"Takes a password, the initial client nonce, the initial client message & the server response.
Generates the final client message, and returns it along with the server signature."
(progn
(if (eq nil (parse-server-nonce :nonce client-nonce :response server-response)) NIL)
(let* ((final-message-bare (format nil "c=biws,r=~a" (parse-server-nonce :nonce client-nonce
:response server-response)))
(salted-password (ironclad:pbkdf2-hash-password
(ironclad:ascii-string-to-byte-array password)
:salt (ironclad:ascii-string-to-byte-array
(parse-server-salt :response server-response))
:digest :sha1
:iterations (parse-server-iterations :response server-response)))
(client-key (gen-hmac-digest :key salted-password
:message (ironclad:ascii-string-to-byte-array "Client Key")))
(stored-key (gen-sha1-digest :key client-key))
(auth-message (format nil "~a,~a,~a"
client-initial-message
server-response
final-message-bare))
(client-signature (gen-hmac-digest :key stored-key
:message (ironclad:ascii-string-to-byte-array auth-message)))
(client-proof (integer->bit-vector (logxor (ironclad:octets-to-integer client-key)
(ironclad:octets-to-integer client-signature))))
(server-key (gen-hmac-digest :key salted-password
:message (ironclad:ascii-string-to-byte-array "Server Key")))
(server-signature (gen-hmac-digest :key server-key
:message (ironclad:ascii-string-to-byte-array auth-message)))
(final-message (format nil "~a,p=~a"
final-message-bare
(base64-encode (write-to-string client-proof)))))
(pairlis '(final-message
final-message-bare
salted-password
client-key
stored-key
auth-message
client-signature
client-proof
server-key
server-signature)
(list final-message
final-message-bare
salted-password
client-key
stored-key
auth-message
client-signature
client-proof
server-key
server-signature)))))
The example conversation in the RFC uses the username user and the password pencil:
C: n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL
S: r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,
i=4096
C: c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
p=v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=
S: v=rmF9pqV8S7suAoZWja4dJRkFsKQ=
Taking the same server response (r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096) and feeding it into my function, I get:
* (cl-scram:gen-client-final-message :password "pencil" :client-nonce "fyko+d2lbbFgONRv9qkxdawL" :client-initial-message "n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL" :server-response "r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096")
((CL-SCRAM::SERVER-SIGNATURE
. #(33 115 21 228 67 190 35 238 223 122 117 125 222 242 209 136 175 228 67
151))
(CL-SCRAM::SERVER-KEY
. #(15 224 146 88 179 172 133 43 165 2 204 98 186 144 62 170 205 191 125 49))
(CL-SCRAM::CLIENT-PROOF
. #*1100100111101011000000111010100000010101011001000101011100110001111100001100100010001101001000110101001010101010001011111000100011100001001110100001001110000)
(CL-SCRAM::CLIENT-SIGNATURE
. #(251 9 164 14 244 111 236 112 227 116 148 143 243 255 231 75 58 114 21
88))
(CL-SCRAM::AUTH-MESSAGE
. "n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096,c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j")
(CL-SCRAM::STORED-KEY
. #(233 217 70 96 195 157 101 195 143 186 217 28 53 143 20 218 14 239 43
214))
(CL-SCRAM::CLIENT-KEY
. #(226 52 196 123 246 195 102 150 221 109 133 43 153 170 162 186 38 85 87
40))
(CL-SCRAM::SALTED-PASSWORD
. #(29 150 238 58 82 155 90 95 158 71 192 31 34 154 44 184 166 225 95 125))
(CL-SCRAM::FINAL-MESSAGE-BARE
. "c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j")
(CL-SCRAM::FINAL-MESSAGE
. "c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,p=IyoxMTAwMTAwMTExMTAxMDExMDAwMDAwMTExMDEwMTAwMDAwMDEwMTAxMDExMDAxMDAwMTAxMDExMTAwMTEwMDAxMTExMTAwMDAxMTAwMTAwMDEwMDAxMTAxMDAxMDAwMTEwMTAxMDAxMDEwMTAxMDEwMDAxMDExMTExMDAwMTAwMDExMTAwMDAxMDAxMTEwMTAwMDAxMDAxMTEwMDAw"))
As you can see, my client-proof (the p= part of the final-message) is wildly different to the one in the example.
I added all of the intermediate variables to the return in case anyone here can see what's going wrong. Unfortunately, there are no examples which show the intermediate variable values, so I can't compare what I'm getting to the alternatives.
The intermediate values for the sample in the RFC 5802: Salted Challenge Response Authentication Mechanism (SCRAM) SASL and GSS-API Mechanisms are on the bottom of this answer.
Your p value is way too long; you are probably encoding the bits as string instead of bytes. You should loop over the byte blocks and XOR each unsigned byte separately. Converting to integer, then to bit string, then back to octet string is going to fail because it will probably remove the most significant zero bits. Once you've got the XOR'ed octet string you can base 64 encode it.
Furthermore, you need to remove n,, from the start of your AuthMessage, as specified in the RFC.
For future developers, without further ado, the intermediate values:
In base 64:
SaltedPassword: HZbuOlKbWl+eR8AfIposuKbhX30=
ClientKey: 4jTEe/bDZpbdbYUrmaqiuiZVVyg=
StoredKey: 6dlGYMOdZcOPutkcNY8U2g7vK9Y=
AuthMessage: n=user,r=fyko+d2lbbFgONRv9qkxdawL,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096,c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j
ClientSignature: XXE4xIawv6vfSePi2ovW5cedthM=
ClientProof: v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=
Using decimal arrays:
SaltedPassword: 29 150 238 58 82 155 90 95 158 71 192 31 34 154 44 184 166 225 95 125
ClientKey: 226 52 196 123 246 195 102 150 221 109 133 43 153 170 162 186 38 85 87 40
StoredKey: 233 217 70 96 195 157 101 195 143 186 217 28 53 143 20 218 14 239 43 214
AuthMessage: n=user,r=fyko+d2lbbFgONRv9qkxdawL,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096,c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j
ClientSignature: 93 113 56 196 134 176 191 171 223 73 227 226 218 139 214 229 199 157 182 19
ClientProof: 191 69 252 191 112 115 217 61 2 36 102 201 67 33 116 95 225 200 225 59
I will ask my question with an example. I have 2 files:
File1-
TR100013|c0_g1
TR100013|c0_g2
TR10009|c0_g1
TR10009|c0_g2
File2-
TR100013|c0_g1 AT1G01360.1 78.79 165 35 0 301 795 19 183 2E-089 272
TR100013|c0_g2 AT1G01360.1 78.79 165 35 0 301 795 19 183 2E-089 272
TR10009|c0_g1 AT1G16240.3 77.42 62 14 0 261 76 113 174 4E-025 95.9
TR10009|c0_g2 AT1G16240.2 69.17 120 37 0 1007 648 113 232 2E-050 171
TR29295|c0_g1 AT1G22540.1 69.19 172 53 2 6 521 34 200 2E-053 180
TR49005|c5_g1 AT5G24530.1 69.21 302 90 1 909 13 39 340 5E-157 446
Expected Output :
TR100013|c0_g1 AT1G01360.1 78.79 165 35 0 301 795 19 183 2E-089 272
TR100013|c0_g2 AT1G01360.1 78.79 165 35 0 301 795 19 183 2E-089 272
TR10009|c0_g1 AT1G16240.3 77.42 62 14 0 261 76 113 174 4E-025 95.9
TR10009|c0_g2 AT1G16240.2 69.17 120 37 0 1007 648 113 232 2E-050 171
I want to compare two files. If the first column is same in both files, then print the whole line of second file which is common in both files.
Using awk:
awk 'NR==FNR{a[$1]++;next};a[$1]' file1 file2
grep can do the same:
grep -wf file1 file2
-w is to match whole word only.
-f specifies the file with the pattern.