define / declare variable in Scilab` - variables

I would like to ask how I can define / declare a variable in Scilab. In some PDFs that I read, it says that I can just type it in and Scilab will take care of the declaration. Not so. I want to set up a matrix equation of something like:
Ax + By + Cz = D
Mx + Ny + Pz = E
Rx + Sy + Tz = F
And then I want to get the general value of x, y, x in terms of A, B, C, D, E, F, M, N, P, R, S, T. I remember this is possible with Matlab. And later on, I want to plug in these values to get actual numbers. Please help.

Scilab is much more oriented at numerical computation than algebra solving, but you can still do it.
In your case you first should define the system in the form M1*x=M2, being M1 upper triangular.
I suggest you look at help for solve() and trianfml(), there are nice examples.
After that you can evaluate the expressions giving any value you want for A, B, C, ..., using evstr()
For symbolic algebra, I recommend Wolfram mathematica, Maple, or Maxima (this last one is open-source like Scilab)

OK, this is what I found. SciLab requires "symbolic math toolbox" in order to do symbolic math. the scimax/overload toolbox (by Calixte Denizet) can do that by integrating Maxima with SciLab. however, it is only available on Linux/Unix OS. another way to do it is the OVLD/SYM toolbox (by the deceased Jean-François Magni) which works with Windows (even Win 7). however, support for this toolbox has ceased due to its author's demise. the installation guide on spoken-tutorial.org no longer exists. thus, I am left with using Maxima by itself to solve symbolic equations and calculus problems.

Related

Mapping a numerical function with two inputs onto one with one input

I‘m quite bad at programming, so please bear with me. I‘m not even sure what the concept I need right now is called, so i don’t know what to google for or write in the title of this post.
My issue is, I numerically integrated a function on Mathematica and have a function F that depends on 2 inputs X and Y. Those inputs form a 2x2 grid. To visualize my solution, I would need a 3D graph.
Now I want to compare this to my analytical solution (/approximation) A, which I know only depends on one input Z, which is the ratio of X/Y. To visualize it, I only need a 2d Graph.
My issue now is, that I‘m not sure how to effectively filter that part of my numerical solution F so that I only consider the outputs with various ratios X/Y. This way, I could easily compare it to my analytical solution by only using a 2d graph.
I hope some of you understand my gibberish. I apologize for not being able to properly explain what I need in the correct language. I would be glad if some of you might be able to help me. Any help is appreciated.
Is my understanding correct? You have a numerically integrated function, F which maps a pair of numbers to a scalar:
F: (x,y) -> (z)
Then, there's another function, A, which takes a scalar and maps it to another scalar:
A: (b) -> (c)
and b is itself the ratio of x and y from before:
b = x/y
And you'd like to compare the outputs of F and A, i.e. compare z to c, as I've defined them here?
One thing you can do is sample the inputs to F that you already have, and then query A with the ratio of those inputs, and compare the output.
To put it another way, you can say, "for this x and this y, I know the output of F is this. Then, when I divide them and put them into A I get this."
Then, you could make a heatmap, say, where one of the axes is the x-value and the other axis is the y-value, and the color corresponds to F(x, y) - A(x/y)

Projection of fisheye camera model by Scaramuzza

I am trying to understand the fisheye model by Scaramuzza, which is implemented in Matlab, see https://de.mathworks.com/help/vision/ug/fisheye-calibration-basics.html#mw_8aca38cc-44de-4a26-a5bc-10fb312ae3c5
The backprojection (uv to xyz) seems fairly straightforward according to the following equation:
, where rho=sqrt(u^2 +v^2)
However, how does the projection (from xyz to uv) work?! In my understanding we get a rather complex set of equations. Unfortunately, I don't find any details on that....
Okay, I believe I understand it now fully after analyzing the functions of the (windows) calibration toolbox by Scaramuzza, see https://sites.google.com/site/scarabotix/ocamcalib-toolbox/ocamcalib-toolbox-download-page
Method 1 found in file "world2cam.m"
For the projection, use the same equation above. In the projection case, the equation has three known (x,y,z) and three unknown variables (u,v and lambda). We first substitute lambda with rho by realizing that
u = x/lambda
v = y/lambda
rho=sqrt(u^2+v^2) = 1/lambda * sqrt(x^2+y^2) --> lambda = sqrt(x^2+y^2) / rho
After that, we have the unknown variables (u,v and rho)
u = x/lambda = x / sqrt(x^2+y^2) * rho
v = y/lambda = y / sqrt(x^2+y^2) * rho
z / lambda = z /sqrt(x^2+y^2) * rho = a0 + a2*rho^2 + a3*rho^3 + a4*rho^4
As you can see, the last equation now has only one unknown, namely rho. Thus, we can solve it easily using e.g. the roots function in matlab. However, the result does not always exist nor is it necessarily unique. After solving the unknown variable rho, calculating uv is very simple using the equation above.
This procedure needs to be performed for each point (x,y,z) separately and is thus rather computationally expensive for an image.
Method 2 found in file "world2cam_fast.m"
The last equation has the form rho(x,y,z). However, if we define m = z / sqrt(x^2+y^2) = tan(90°-theta), it only depends on one variable, namely rho(m).
Instead of solving this equation rho(m) for every new m, the authors "plot" the function for several values of m and fit an 8th order polynomial to these points. Using this polynomial they can calculate an approximate value for rho(m) much quicker in the following.
This becomes clear, because "world2cam_fast.m" makes use of ocam_model.pol, which is calculated in "undistort.m". "undistort.m" in turn makes use of "findinvpoly.m".

Quadratic Programming in Julia

Well, I have a quadratic programming optimization problem, well structured in Matlab. For instance,
With x a n*1 vector, we have
x = argmin (1/2*x'*H*x+f'*x)
s.t.
A*x <= b
x_lb<=x<=x_ub
Of course, A is a matrix and b, x_lb, x_ub are vectors.
However, my question is, how to construct such a standard in Julia
I tried with Jump.
Actually,
A*x .<= b
can make the last constiant work. But how to construct the second constraint x_lb<=x<=x_ub in JuMP? I tried with
[x_lb[i]<=x[i]<=x_ub[i] for i =1:X_dim]
but it didn't work. It seems like only constant can be assigned as upper/lower bounds?
Also, for the quadratic objective, "aff" and "quad" can be used but we need to treat x, H and f element-wisely, which makes such a job time-consuming.
Any help is appreciated!

How to calculate the length of a polynomial of degree 4 (within a square root)

I am trying to solve an integral with this form (where a, b, c, d, e, f, and g are constants):
integral from f to g( (ax^4 + bx^3 + cx^2 + dx + e)^0.5dx )
I've come across this when trying to find the length of a Cubic Bezier curve (without using recursive subdivision). My goal is to have a symbolic equation that can find the length of a Bezier between any range of t (i.e f and g in the equation above).
My first guess was to complete the square, but Wikipedia was clear that that only works with quadratic equations.
Integration by parts... doesn't seem like it'd work for this.
The next question (though, not the subject of this topic), is using that really faster than recursively subdividing the Bezier?
Just in case anyone else finds this question, there is no closed form solution, but there are very efficient ways to find the length without doing recursive subdivision, such as described on http://pomax.github.com/bezierinfo/#arclength

Normal Distribution function

edit
So based on the answers so far (thanks for taking your time) I'm getting the sense that I'm probably NOT looking for a Normal Distribution function. Perhaps I'll try to re-describe what I'm looking to do.
Lets say I have an object that returns a number of 0 to 10. And that number controls "speed". However instead of 10 being the top speed, I need 5 to be the top speed, and anything lower or higher would slow down accordingly. (with easing, thus the bell curve)
I hope that's clearer ;/
-original question
These are the times I wish I remembered something from math class.
I'm trying to figure out how to write a function in obj-C where I define the boundries, ex (0 - 10) and then if x = foo y = ? .... where x runs something like 0,1,2,3,4,5,6,7,8,9,10 and y runs 0,1,2,3,4,5,4,3,2,1,0 but only on a curve
Something like the attached image.
I tried googling for Normal Distribution but its way over my head. I was hoping to find some site that lists some useful algorithms like these but wasn't very successful.
So can anyone help me out here ? And if there is some good sites which shows useful mathematical functions, I'd love to check them out.
TIA!!!
-added
I'm not looking for a random number, I'm looking for.. ex: if x=0 y should be 0, if x=5 y should be 5, if x=10 y should be 0.... and all those other not so obvious in between numbers
alt text http://dizy.cc/slider.gif
Okay, your edit really clarifies things. You're not looking for anything to do with the normal distribution, just a nice smooth little ramp function. The one Paul provides will do nicely, but is tricky to modify for other values. It can be made a little more flexible (my code examples are in Python, which should be very easy to translate to any other language):
def quarticRamp(x, b=10, peak=5):
if not 0 <= x <= b:
raise ValueError #or return 0
return peak*x*x*(x-b)*(x-b)*16/(b*b*b*b)
Parameter b is the upper bound for the region you want to have a slope on (10, in your example), and peak is how high you want it to go (5, in the example).
Personally I like a quadratic spline approach, which is marginally cheaper computationally and has a different curve to it (this curve is really nice to use in a couple of special applications that don't happen to matter at all for you):
def quadraticSplineRamp(x, a=0, b=10, peak=5):
if not a <= x <= b:
raise ValueError #or return 0
if x > (b+a)/2:
x = a + b - x
z = 2*(x-a)/b
if z > 0.5:
return peak * (1 - 2*(z-1)*(z-1))
else:
return peak * (2*z*z)
This is similar to the other function, but takes a lower bound a (0 in your example). The logic is a little more complex because it's a somewhat-optimized implementation of a piecewise function.
The two curves have slightly different shapes; you probably don't care what the exact shape is, and so could pick either. There are an infinite number of ramp functions meeting your criteria; these are two simple ones, but they can get as baroque as you want.
The thing you want to plot is the probability density function (pdf) of the normal distribution. You can find it on the mighty Wikipedia.
Luckily, the pdf for a normal distribution is not difficult to implement - some of the other related functions are considerably worse because they require the error function.
To get a plot like you showed, you want a mean of 5 and a standard deviation of about 1.5. The median is obviously the centre, and figuring out an appropriate standard deviation given the left & right boundaries isn't particularly difficult.
A function to calculate the y value of the pdf given the x coordinate, standard deviation and mean might look something like:
double normal_pdf(double x, double mean, double std_dev) {
return( 1.0/(sqrt(2*PI)*std_dev) *
exp(-(x-mean)*(x-mean)/(2*std_dev*std_dev)) );
}
A normal distribution is never equal to 0.
Please make sure that what you want to plot is indeed a
normal distribution.
If you're only looking for this bell shape (with the tangent and everything)
you can use the following formula:
x^2*(x-10)^2 for x between 0 and 10
0 elsewhere
(Divide by 125 if you need to have your peek on 5.)
double bell(double x) {
if ((x < 10) && (x>0))
return x*x*(x-10.)*(x-10.)/125.;
else
return 0.;
}
Well, there's good old Wikipedia, of course. And Mathworld.
What you want is a random number generator for "generating normally distributed random deviates". Since Objective C can call regular C libraries, you either need a C-callable library like the GNU Scientific Library, or for this, you can write it yourself following the description here.
Try simulating rolls of dice by generating random numbers between 1 and 6. If you add up the rolls from 5 independent dice rolls, you'll get a surprisingly good approximation to the normal distribution. You can roll more dice if you'd like and you'll get a better approximation.
Here's an article that explains why this works. It's probably more mathematical detail than you want, but you could show it to someone to justify your approach.
If what you want is the value of the probability density function, p(x), of a normal (Gaussian) distribution of mean mu and standard deviation sigma at x, the formula is
p(x) = exp( ((x-mu)^2)/(2*sigma^2) ) / (sigma * 2 * sqrt(pi))
where pi is the area of a circle divided by the square of its radius (approximately 3.14159...). Using the C standard library math.h, this is:
#include <math>
double normal_pdf(double x, double mu, double sigma) {
double n = sigma * 2 * sqrt(M_PI); //normalization factor
p = exp( -pow(x-mu, 2) / (2 * pow(sigma, 2)) ); // unnormalized pdf
return p / n;
}
Of course, you can do the same in Objective-C.
For reference, see the Wikipedia or MathWorld articles.
It sounds like you want to write a function that yields a curve of a specific shape. Something like y = f(x), for x in [0:10]. You have a constraint on the max value of y, and a general idea of what you want the curve to look like (somewhat bell-shaped, y=0 at the edges of the x range, y=5 when x=5). So roughly, you would call your function iteratively with the x range, with a step that gives you enough points to make your curve look nice.
So you really don't need random numbers, and this has nothing to do with probability unless you want it to (as in, you want your curve to look like a the outline of a normal distribution or something along those lines).
If you have a clear idea of what function will yield your desired curve, the code is trivial - a function to compute f(x) and a for loop to call it the desired number of times for the desired values of x. Plot the x,y pairs and you're done. So that's your algorithm - call a function in a for loop.
The contents of the routine implementing the function will depend on the specifics of what you want the curve to look like. If you need help on functions that might return a curve resembling your sample, I would direct you to the reading material in the other answers. :) However, I suspect that this is actually an assignment of some sort, and that you have been given a function already. If you are actually doing this on your own to learn, then I again echo the other reading suggestions.
y=-1*abs(x-5)+5