I would like to draw with Maple the following expression :
> I_n:=Sum((H_(k+1)H_(n-k+1))/k+2,k=0..n);
witch > H_n:=sum(1/k,k=1..n);
My work:
>f:=n->sum(1/k,k=1..n);
I_n:=sum(f(j+1)*f(n-j+1)/(j+2), j = 0 .. n);
But I do not see how I can draw this.
Thank you for your help.
plot(I_n, n= 0..20);
or change 20 to any other upper limit.
It makes a big difference to the result if you distinguish whether n is allowed to take on non-integer values (eg. n=10.23 etc).
You originally wrote Sum for defining I_n, but then your code fragment had lowercase sum. You should be careful about which you try and use because it will affect what happens when plot tries to use non-integer values of n. (Using Sum without any rounding call on n will also risk generating an empty plot since evalf/Sum will baulk at the non-float values and you can get an empty plot by accident.)
Compare all these, and especially note the n that appear outside the summation (as a partial result) when using sum to define I_n.
It's up to you to figure out whether you wanted n to be purely integer-valued, and then choose the plotting method accordingly.
f:=n->sum(1/k,k=1..n):
I_n:=Sum(f(j+1)*f(n-j+1)/(j+2), j = 0 .. n);
sum(f(j+1)*f(n-j+1)/(j+2), j = 0 .. n); # Note the `n` outisde the sum.
value(I_n); # As if I_n:=sum(...) had been used. Note the `n` outside the sum.
plot(value(I_n), n= 0..20); # also what you'd get if you plotted I_N:=sum(...)
plot(subs(n=floor(n),I_n), n=0..20); # Step function. Could also try with round().
plot(I_n, n=0..20); # Empty plot since I_n=Sum(...) used without rounding `n`.
plots:-pointplot([seq([n,I_n],n=0..20)]); # use style=line option to join the points
My main point is that the result from executing sum(f(j+1)*f(n-j+1)/(j+2), j = 0 .. n) may well be not something that you intended to plot in the case that n is not an integer. And if so then you should account for that when plotting it.
Related
I want to calculate the numerical derivative of two arrays a and b.
If I do
c = diff(a) / diff(b)
I get what I want, but I loose the edge (the last point) so c.shape ~= a.shape.
If I do
c = gradient(a, b)
then c.shape = a.shape, but I get a completely different result.
I have read how gradient is calculated in numpy and I guess it does a completely different thing, although I dont understand quite well the difference yet. But is there a way or another function to calculate the differential which also gives the values at the edges?
And why is the result so different between gradient and diff?
These functions, although related, do different actions.
np.diff simply takes the differences of matrix slices along a given axis, and used for n-th difference returns a matrix smaller by n along the given axis (what you observed in the n=1 case). Please see: https://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html
np.gradient produces a set of gradients of an array along all its dimensions while preserving its shape https://docs.scipy.org/doc/numpy/reference/generated/numpy.gradient.html Please also observe that np.gradient should be executed for one input array, your second argument b does not make sense here (was interpreted as first non-keyword argument from *varargs which is meant to describe spacings between the values of the first argument), hence the results that don't match your intuition.
I would simply use c = diff(a) / diff(b) and append values to c if you really need to have c.shape match a.shape. For instance, you might append zeros if you expect the gradient to vanish close to the edges of your window.
I need to do something very similar to what is detailed in this post. But the way the stencils are done are not obvious to me... well the stencil for _flux is, but the ones for temp_bz & temp_bx are not.
I think the picture would get clearer with variables, instead of numbers (something like stencil = np.array([[a, b], [c, d]]) with a=0.5, b=...
As example, if the recurrence relation is
flux2[i,j] = a*flux2[i-1,j] + b*bz[i-1,j]*dx + c*flux2[i,j-1] - d*bx[i,j-1]*dz
how the code would be changed ?
Having flux2, bz and bx variables, and assuming they are numpy arrays (if they are not, they should), you could write that ecuation in a vectorized form as follows:
flux2[1:,1:] = a * flux2[:-1,1:] + b * bz[:-1,1:] * dx + c * flux2[1:,:-1] - d * bx[1:,:-1] * dz
Note that, since you didn't mention dz, I assumed it is a constant, if it is a matrix of the same shape as flux2, replace with dz[1:, 1:] (same applies to dx).
That line above will vectorize the operation to every i,j of the matrix, and thus, remove the for loop, giving a considerable speedup.
You would have to define the boundary conditions for row and column 0, as your equation doesn't define what to do in those special cases.
So, in short, as your stencil only uses one position for each variable, and only has 4 interactions, I would say is way faster to calculate it in its analytic form, rather than convolving 3 images with almost all-0 stencils (which would be quite a lot of overkill).
I have some code which uses scipy.integration.cumtrapz to compute the antiderivative of a sampled signal. I would like to use Simpson's rule instead of Trapezoid. However scipy.integration.simps seems not to have a cumulative counterpart... Am I missing something? Is there a simple way to get a cumulative integration with "scipy.integration.simps"?
You can always write your own:
def cumsimp(func,a,b,num):
#Integrate func from a to b using num intervals.
num*=2
a=float(a)
b=float(b)
h=(b-a)/num
output=4*func(a+h*np.arange(1,num,2))
tmp=func(a+h*np.arange(2,num-1,2))
output[1:]+=tmp
output[:-1]+=tmp
output[0]+=func(a)
output[-1]+=func(b)
return np.cumsum(output*h/3)
def integ1(x):
return x
def integ2(x):
return x**2
def integ0(x):
return np.ones(np.asarray(x).shape)*5
First look at the sum and derivative of a constant function.
print cumsimp(integ0,0,10,5)
[ 10. 20. 30. 40. 50.]
print np.diff(cumsimp(integ0,0,10,5))
[ 10. 10. 10. 10.]
Now check for a few trivial examples:
print cumsimp(integ1,0,10,5)
[ 2. 8. 18. 32. 50.]
print cumsimp(integ2,0,10,5)
[ 2.66666667 21.33333333 72. 170.66666667 333.33333333]
Writing your integrand explicitly is much easier here then reproducing the simpson's rule function of scipy in this context. Picking intervals will be difficult to do when provided a single array, do you either:
Use every other value for the edges of simpson's rule and the remaining values as centers?
Use the array as edges and interpolate values of centers?
There are also a few options for how you want the intervals summed. These complications could be why its not coded in scipy.
Your question has been answered a long time ago, but I came across the same problem recently. I wrote some functions to compute such cumulative integrals for equally spaced points; the code can be found on GitHub. The order of the interpolating polynomials ranges from 1 (trapezoidal rule) to 7. As Daniel pointed out in the previous answer, some choices have to be made on how the intervals are summed, especially at the borders; results may thus be sightly different depending on the package you use. Be also aware that the numerical integration may suffer from Runge's phenomenon (unexpected oscillations) for high orders of polynomials.
Here is an example:
import numpy as np
from scipy import integrate as sp_integrate
from gradiompy import integrate as gp_integrate
# Definition of the function (polynomial of degree 7)
x = np.linspace(-3,3,num=15)
dx = x[1]-x[0]
y = 8*x + 3*x**2 + x**3 - 2*x**5 + x**6 - 1/5*x**7
y_int = 4*x**2 + x**3 + 1/4*x**4 - 1/3*x**6 + 1/7*x**7 - 1/40*x**8
# Cumulative integral using scipy
y_int_trapz = y_int [0] + sp_integrate.cumulative_trapezoid(y,dx=dx,initial=0)
print('Integration error using scipy.integrate:')
print(' trapezoid = %9.5f' % np.linalg.norm(y_int_trapz-y_int))
# Cumulative integral using gradiompy
y_int_trapz = gp_integrate.cumulative_trapezoid(y,dx=dx,initial=y_int[0])
y_int_simps = gp_integrate.cumulative_simpson(y,dx=dx,initial=y_int[0])
print('\nIntegration error using gradiompy.integrate:')
print(' trapezoid = %9.5f' % np.linalg.norm(y_int_trapz-y_int))
print(' simpson = %9.5f' % np.linalg.norm(y_int_simps-y_int))
# Higher order cumulative integrals
for order in range(5,8,2):
y_int_composite = gp_integrate.cumulative_composite(y,dx,order=order,initial=y_int[0])
print(' order %i = %9.5f' % (order,np.linalg.norm(y_int_composite-y_int)))
# Display the values of the cumulative integral
print('\nCumulative integral (with initial offset):\n',y_int_composite)
You should get the following result:
'''
Integration error using scipy.integrate:
trapezoid = 176.10502
Integration error using gradiompy.integrate:
trapezoid = 176.10502
simpson = 2.52551
order 5 = 0.48758
order 7 = 0.00000
Cumulative integral (with initial offset):
[-6.90203571e+02 -2.29979407e+02 -5.92267425e+01 -7.66415188e+00
2.64794452e+00 2.25594840e+00 6.61937372e-01 1.14797061e-13
8.20130517e-01 3.61254267e+00 8.55804341e+00 1.48428883e+01
1.97293221e+01 1.64257877e+01 -1.13464286e+01]
'''
I would go with Daniel's solution. But you need to be careful if the function that you are integrating is itself subject to fluctuations. Simpson's requires the function to be well-behaved (meaning in this case, one that is continuous).
There are techniques for making a moderately badly behaved function look like it is better behaved than it really is (really forms of approximation of your function) but in that case you have to be sure that the function "adequately" approximates yours. In that case you might make the intervals may be non-uniform to handle the problem.
An example might be in considering the flow of a field that, over longer time scales, is approximated by a well-behaved function but which over shorter periods is subject to limited random fluctuations in its density.
How do you impose a constraint that all values in a vector you are trying to optimize for are greater than zero, using fmincon()?
According to the documentation, I need some parameters A and b, where A*x ≤ b, but I think if I make A a vector of -1's and b 0, then I will have optimized for the sum of x>0, instead of each value of x greater than 0.
Just in case you need it, here is my code. I am trying to optimize over a vector (x) such that the (componentwise) product of x and a matrix (called multiplierMatrix) makes a matrix for which the sum of the columns is x.
function [sse] = myfun(x) % this is a nested function
bigMatrix = repmat(x,1,120) .* multiplierMatrix;
answer = sum(bigMatrix,1)';
sse = sum((expectedAnswer - answer).^2);
end
xGuess = ones(1:120,1);
[sse xVals] = fmincon(#myfun,xGuess,???);
Let me know if I need to explain my problem better. Thanks for your help in advance!
You can use the lower bound:
xGuess = ones(120,1);
lb = zeros(120,1);
[sse xVals] = fmincon(#myfun,xGuess, [],[],[],[], lb);
note that xVals and sse should probably be swapped (if their name means anything).
The lower bound lb means that elements in your decision variable x will never fall below the corresponding element in lb, which is what you are after here.
The empties ([]) indicate you're not using linear constraints (e.g., A,b, Aeq,beq), only the lower bounds lb.
Some advice: fmincon is a pretty advanced function. You'd better memorize the documentation on it, and play with it for a few hours, using many different example problems.
Here's the problem statement:
Consider the problem of building a wall out of 2x1 and 3x1 bricks (horizontalĂ—vertical dimensions) such that, for extra strength, the gaps between horizontally-adjacent bricks never line up in consecutive layers, i.e. never form a "running crack".
There are eight ways of forming a crack-free 9x3 wall, written W(9,3) = 8.
Calculate W(32,10). < Generalize it to W(x,y) >
http://www.careercup.com/question?id=67814&form=comments
The above link gives a few solutions, but I'm unable to understand the logic behind them. I'm trying to code this in Perl and have done so far:
input : W(x,y)
find all possible i's and j's such that x == 3(i) + 2(j);
for each pair (i,j) ,
find n = (i+j)C(j) # C:combinations
Adding all these n's should give the count of all possible combinations. But I have no idea on how to find the real combinations for one row and how to proceed further.
Based on the claim that W(9,3)=8, I'm inferring that a "running crack" means any continuous vertical crack of height two or more. Before addressing the two-dimensional problem as posed, I want to discuss an analogous one-dimensional problem and its solution. I hope this will make it more clear how the two-dimensional problem is thought of as one-dimensional and eventually solved.
Suppose you want to count the number of lists of length, say, 40, whose symbols come from a reasonably small set of, say, the five symbols {a,b,c,d,e}. Certainly there are 5^40 such lists. If we add an additional constraint that no letter can appear twice in a row, the mathematical solution is still easy: There are 5*4^39 lists without repeated characters. If, however, we instead wish to outlaw consonant combinations such as bc, cb, bd, etc., then things are more difficult. Of course we would like to count the number of ways to choose the first character, the second, etc., and multiply, but the number of ways to choose the second character depends on the choice of the first, and so on. This new problem is difficult enough to illustrate the right technique. (though not difficult enough to make it completely resistant to mathematical methods!)
To solve the problem of lists of length 40 without consonant combinations (let's call this f(40)), we might imagine using recursion. Can you calculate f(40) in terms of f(39)? No, because some of the lists of length 39 end with consonants and some end with vowels, and we don't know how many of each type we have. So instead of computing, for each length n<=40, f(n), we compute, for each n and for each character k, f(n,k), the number of lists of length n ending with k. Although f(40) cannot be
calculated from f(39) alone, f(40,a) can be calculated in terms of f(30,a), f(39,b), etc.
The strategy described above can be used to solve your two-dimensional problem. Instead of characters, you have entire horizontal brick-rows of length 32 (or x). Instead of 40, you have 10 (or y). Instead of a no-consonant-combinations constraint, you have the no-adjacent-cracks constraint.
You specifically ask how to enumerate all the brick-rows of a given length, and you're right that this is necessary, at least for this approach. First, decide how a row will be represented. Clearly it suffices to specify the locations of the 3-bricks, and since each has a well-defined center, it seems natural to give a list of locations of the centers of the 3-bricks. For example, with a wall length of 15, the sequence (1,8,11) would describe a row like this: (ooo|oo|oo|ooo|ooo|oo). This list must satisfy some natural constraints:
The initial and final positions cannot be the centers of a 3-brick. Above, 0 and 14 are invalid entries.
Consecutive differences between numbers in the sequence must be odd, and at least three.
The position of the first entry must be odd.
The difference between the last entry and the length of the list must also be odd.
There are various ways to compute and store all such lists, but the conceptually easiest is a recursion on the length of the wall, ignoring condition 4 until you're done. Generate a table of all lists for walls of length 2, 3, and 4 manually, then for each n, deduce a table of all lists describing walls of length n from the previous values. Impose condition 4 when you're finished, because it doesn't play nice with recursion.
You'll also need a way, given any brick-row S, to quickly describe all brick-rows S' which can legally lie beneath it. For simplicity, let's assume the length of the wall is 32. A little thought should convince you that
S' must satisfy the same constraints as S, above.
1 is in S' if and only if 1 is not in S.
30 is in S' if and only if 30 is not in S.
For each entry q in S, S' must have a corresponding entry q+1 or q-1, and conversely every element of S' must be q-1 or q+1 for some element q in S.
For example, the list (1,8,11) can legally be placed on top of (7,10,30), (7,12,30), or (9,12,30), but not (9,10,30) since this doesn't satisfy the "at least three" condition. Based on this description, it's not hard to write a loop which calculates the possible successors of a given row.
Now we put everything together:
First, for fixed x, make a table of all legal rows of length x. Next, write a function W(y,S), which is to calculate (recursively) the number of walls of width x, height y, and top row S. For y=1, W(y,S)=1. Otherwise, W(y,S) is the sum over all S' which can be related to S as above, of the values W(y-1,S').
This solution is efficient enough to solve the problem W(32,10), but would fail for large x. For example, W(100,10) would almost certainly be infeasible to calculate as I've described. If x were large but y were small, we would break all sensible brick-laying conventions and consider the wall as being built up from left-to-right instead of bottom-to-top. This would require a description of a valid column of the wall. For example, a column description could be a list whose length is the height of the wall and whose entries are among five symbols, representing "first square of a 2x1 brick", "second square of a 2x1 brick", "first square of a 3x1 brick", etc. Of course there would be constraints on each column description and constraints describing the relationship between consecutive columns, but the same approach as above would work this way as well, and would be more appropriate for long, short walls.
I found this python code online here and it works fast and correctly. I do not understand how it all works though. I could get my C++ to the last step (count the total number of solutions) and could not get it to work correctly.
def brickwall(w,h):
# generate single brick layer of width w (by recursion)
def gen_layers(w):
if w in (0,1,2,3):
return {0:[], 1:[], 2:[[2]], 3:[[3]]}[w]
return [(layer + [2]) for layer in gen_layers(w-2)] + \
[(layer + [3]) for layer in gen_layers(w-3)]
# precompute info about whether pairs of layers are compatible
def gen_conflict_mat(layers, nlayers, w):
# precompute internal brick positions for easy comparison
def get_internal_positions(layer, w):
acc = 0; intpos = set()
for brick in layer:
acc += brick; intpos.add(acc)
intpos.remove(w)
return intpos
intpos = [get_internal_positions(layer, w) for layer in layers]
mat = []
for i in range(nlayers):
mat.append([j for j in range(nlayers) \
if intpos[i].isdisjoint(intpos[j])])
return mat
layers = gen_layers(w)
nlayers = len(layers)
mat = gen_conflict_mat(layers, nlayers, w)
# dynamic programming to recursively compute wall counts
nwalls = nlayers*[1]
for i in range(1,h):
nwalls = [sum(nwalls[k] for k in mat[j]) for j in range(nlayers)]
return sum(nwalls)
print(brickwall(9,3)) #8
print(brickwall(9,4)) #10
print(brickwall(18,5)) #7958
print(brickwall(32,10)) #806844323190414