I create my new altercoin,but when I first run it,it already shows:"No block source available 5 week(s) behind".
And I start anther computer in the LAN, they link succefully.
I use the code of Datacoin.
static const uint256 hashGenesisBlockOfficial("f9f6d9a689f7a4093c71f397d8fe3fbef3a05cd6f919d51b4a9447aa22743dfb");
static const uint256 hashGenesisBlockTestNet("f9f6d9a689f7a4093c71f397d8fe3fbef3a05cd6f919d51b4a9447aa22743dfb");
// Genesis block
qDebug()<<"Genesis block";
const char* pszStartTopic = "The Times 26/Dec/2013 Chancellor on brink of second bailout for banks";//https://bitcointalk.org/index.php?topic=325735.0";
CTransaction txNew;
txNew.vin.resize(1);
txNew.vout.resize(1);
txNew.vin[0].scriptSig = CScript() << 0 << CBigNum(999) << vector<unsigned char>((const unsigned char*)pszStartTopic, (const unsigned char*)pszStartTopic + strlen(pszStartTopic));
txNew.vout[0].nValue = COIN;
txNew.vout[0].scriptPubKey = CScript();
CBlock block;
block.vtx.push_back(txNew);
block.hashPrevBlock = 0;
block.hashMerkleRoot = block.BuildMerkleTree();
block.nTime = 1387977869 ;//http://www.unixtimestamp.com/index.php
block.nBits = TargetFromInt(6);
block.nNonce = 49030125;
block.bnPrimeChainMultiplier = (uint64) 5651310;
if (fTestNet)
{
block.nTime = 1387977869 ;
block.nBits = TargetFromInt(4);
block.nNonce = 46032;
block.bnPrimeChainMultiplier = (uint64) 211890;
}
//// debug print
uint256 hash = block.GetHash();
printf("%s\n", hash.ToString().c_str());
qDebug()<<"hash:"<<hash.ToString().c_str();
printf("%s\n", hashGenesisBlock.ToString().c_str());
qDebug()<<"hashGenesisBlock:"<<hashGenesisBlock.ToString().c_str();
printf("%s\n", block.hashMerkleRoot.ToString().c_str());
qDebug()<<"block.hashMerkleRoot:"<<block.hashMerkleRoot.ToString().c_str();
assert(block.hashMerkleRoot == uint256("a0c44c1b6dd50fcaa2bc1c4d7f8ca406506caee88578d751fb3824b41bc34d84"));
block.print();
assert(hash == hashGenesisBlock);
{
CValidationState state;
assert(block.CheckBlock(state, true, true));
assert(CheckProofOfWork(block.GetHeaderHash(), block.nBits, block.bnPrimeChainMultiplier, block.nPrimeChainType, block.nPrimeChainLength));
}
Failed at assert(CheckProofOfWork(block.GetHeaderHash(), block.nBits, block.bnPrimeChainMultiplier, block.nPrimeChainType, block.nPrimeChainLength));.
And the debug.log says:
CBlock(hash=f9f6d9a689f7a4093c71f397d8fe3fbef3a05cd6f919d51b4a9447aa22743dfb, hashBlockHeader=7d6aeeb7ca2b87d2f48bbd7a675c8374691c4f44f0db1a10de66436bfbcb0188, ver=2, hashPrevBlock=0000000000000000000000000000000000000000000000000000000000000000, hashMerkleRoot=a0c44c1b6dd50fcaa2bc1c4d7f8ca406506caee88578d751fb3824b41bc34d84, nTime=1387977869, nBits=06000000, nNonce=49030125, vtx=1)
CTransaction(hash=a0c44c1b6dd50fcaa2bc1c4d7f8ca406506caee88578d751fb3824b41bc34d84, ver=1, vin.size=1, vout.size=1, nLockTime=0, data.size=0)
CTxIn(COutPoint(0000000000000000000000000000000000000000000000000000000000000000, 4294967295), coinbase 0002e703455468652054696d65732032362f4465632f32303133204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73)
CTxOut(error)
ERROR: CheckPrimeProofOfWork() : block header hash under limit
ERROR: CheckProofOfWork() : check failed for prime proof-of-work
Anything else can I change to make the genesis block work?
You must mine the genesis block. There is no code in the most recent heads of the altcoin sources that can do the mining for you, although earlier releases of the source code would automatically create a new genesis block at that point, instead of failing the assertion. That was taken out, since it's not needed and may in fact cause more headaches for the average miner if their local db becomes unavailable.
You can try to go back in time on your source code tree to find an earlier version of the source you forked from, and try to find the code that creates the genesis block. When it runs it will try to mine a new genesis block, and when it does it will fail one more time at that assertion. You then have to put that hash and nonce into your main.h file, and do it for both your main net and test net. After that, the assertion will not fail anymore and you have the hashes for your genesis block in the code now.
Here's the code that does it, in case you can't find it in your older source..
// If genesis block hash does not match, then generate new genesis hash.
if (block.GetHash() != hashGenesisBlock)
{
printf("Searching for genesis block...\n");
// This will figure out a valid hash and Nonce if you're
// creating a different genesis block:
uint256 hashTarget = CBigNum().SetCompact(block.nBits).getuint256();
uint256 thash;
while(true)
{
thash = scrypt_blockhash(BEGIN(block.nVersion));
if (thash <= hashTarget)
break;
if ((block.nNonce & 0xFFF) == 0)
{
printf("nonce %08X: hash = %s (target = %s)\n", block.nNonce, thash.ToString().c_str(), hashTarget.ToString().c_str());
}
++block.nNonce;
if (block.nNonce == 0)
{
printf("NONCE WRAPPED, incrementing time\n");
++block.nTime;
}
}
printf("block.nTime = %u \n", block.nTime);
printf("block.nNonce = %u \n", block.nNonce);
printf("block.GetHash = %s\n", block.GetHash().ToString().c_str());
Once it finds a nonce that makes a hash that satisfies the target, it will stop and print the nonce and hash values. You need to put these new genesis block nonce and hash values into your code so that it will pass the assertions next time.
If your code is based on older (non-optimized) source code, then you won't have a function scrypt_blockhash() and you likely need to use the original functions. So change the code:
thash = scrypt_blockhash(BEGIN(block.nVersion));
to
static char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
scrypt_1024_1_1_256_sp(BEGIN(block.nVersion), BEGIN(thash), scratchpad);
If you do need to use the older function scrypt_1024_1_1_256_sp then you should also find the definition of SCRYPT_SCRATCHPAD_SIZE in the header files too.
Finally, all this is printed in the debug.log files. You will need to look there to find it.
Cheers!
If you want to generate our own unique genesis block you should generate and replace at least the following parameters:
nTime (the unix time. Your wallet will display the "No block source available 5 week(s) behind" mentioned if this is 5 weeks old from
now)
pszTimeStamp (the "timestamp" to "justify" no premining has taken place)
hashMerkleRoot (the merkle root based on the coinbase transaction of the block)
hashGenesisBlock (the genesis hash itself!)
nNonce (the correct nounce which is incremented when searching for the hash that satisfies the target (=difficulty))
The pubkey in the output transaction script can also be changed to a unique value. However, as the genesis block can't be spent anyway the same pubkey can be used as in e.g. Bitcoin.
You can use this script to create the values for sha256/scrypt:
https://github.com/lhartikk/GenesisH0
There is also a faster implementation done in C but sha256 only:
https://github.com/Gnaf/GenesisBlockZero
The error because your generated genesis doesn't match the proof of work algorithm.
Your generated hash must be match the blockhash which satisfy the pow logic.
block.GetHash() shoud be eual to hashGenesisBlock
the hashGenesisBlock calculated by pow by changing the nonce parameter ,at some point you will get a hash which should satisfy the pow logic(condition)
Related
I am fairly new to developing smartcontracts and have run into an issue while testing. My intention is to ensure the smartcontract cannot mint more than 13 ERC721 tokens. My understanding is that a require function can have a second string argument that will revert a string as an error if the require condition is not met. Is this correct?
The following is my smart contract code:
contract TheCondemned_Episode is ERC721Enumerable {
string[] public episodes;
constructor() ERC721("TheCondemned_e1", "TCe1") public {
}
function mint(string memory _episode) public {
require(episodes.length <= 13, "Cannot make more than 13 episodes");
episodes.push(_episode);
uint _id= episodes.length;
_mint(msg.sender, _id);
}
}
And the test I am running is as follows:
it('Cannot create more than 13 episodes', async() => {
for(var i=0; i===13; i++){
var episode= `Episode ${i}`
await contract.mint(episode)
}
try {
await contract.mint('Episode 14');
assert(true);
}
catch (err) {
return;
}
assert(false, "The contract did not throw.");
The test fails and returns "The contract did not throw". What is the best practice in regards to catching a revert string from a failed require condition when testing?
My understanding is that a require function can have a second string argument that will revert a string as an error if the require condition is not met. Is this correct?
That's correct. Here's an example of an always failing require() condition that throws an exception with the error message.
require(false, 'Error message');
However, you have a logical error in the Solidity require() condition, as well as in the JS test snippet.
First, let's uncover the Solidity code. For simplicity, let's assume you're allowing to mint only 1 episode.
require(episodes.length <= 1, "Cannot make more than 1 episode");
First iteration (expected to pass)
episodes.length is 0, that's <= 1. Condition passes, you mint the first token, and then push to the episodes array, so its length becomes 1 after the condition.
Second iteration (expected to fail)
episodes.length is 1, that's still <= 1. So the condition passes as well.
Solution: Replace the <= (less than or equal) to just < (less than).
require(episodes.length < 1, "Cannot make more than 1 episode");
First iteration (expected to pass)
episodes.length is 0, that's < 1. Condition passes, you mint the first token, and then push to the episodes array, so its length becomes 1 after the condition.
Second iteration (expected to fail)
episodes.length is 1, which fails the condition 1 < 1, as you expect.
I'm assuming that your intention in the JS snippet is to call the mint() function 13 times in the loop, and then 14th time in the try/catch block.
However, the loop currently doesn't perform any iteration. So in fact, you're only executing the mint() function once (in the try/catch block).
The second parameter in the for loop is a condition stating "this loop will keep iterating for as long as this condition is met". But since you set the value of i to 0 in the first parameter, the loop condition (i===13) is not met, and the loop doesn't perform even the first iteration.
Solution: Check whether the i is "less than 13" instead of just "equals 13".
for(var i = 0; i < 13; i++) {
This way, the loop will iterate 13 times.
I've searched StackOverflow trying to find a similar problem, but haven't come across it, so I am posting this question.
I am trying to write an C++ HTTPS client using Microsoft's SChannel libraries, and I'm getting stochastic errors with chunked message transfer. This issue only seems to occur on very long downloads -- short ones generally work OK. Most of the time the code works properly -- even for long downloads -- but occasionally the recv() command gracefully timesout, disconnecting my TLS session, and other times, I get an incomplete last packet. The stochastic errors appear to be the result of the different size chunks and encryption blocks the server is using to pass the data. I know I need to handle this variation, but while this would be easy to solve on an unencrypted HTTP connection, the encryption aspect is causing me problems.
First, the timeout problem, which occurs about 5% of the time I request large HTTP requests (about 10 MB of data from a single HTTP GET request).
The timeout is resulting because on the last chunk I have specified a bigger receive buffer than the data remaining on a blocking socket. The obvious fix to this is to only request exactly the number of bytes I need for the next chunk, and that is what I did. But for some reason, the amount received from each request is less than what I request, yet appears to be missing no data after decryption. I'm guessing this must be due to some compression in the data stream, but I don't know. IN any event, if it is using compression, I have no idea how to translate the size of the decrypted uncompressed byte stream into the size of compressed encrypted byte stream including the encryption headers and trailers to request the exact right number of bytes. Can anyone help me do that?
The alternative approach is for me to just look for two CR+LFs in a row, which would also signal the end of the HTTPS response. But because the data is encrypted, I can't figure out how to look byte by byte. SChannel's DecryptMessage() seems to do its decryptions in blocks, not byte by byte. Can anyone in this forum provide any advice on how to do byte-by-byte decryption to enable me to look for the end of the chunked output?
The second problem is DecryptMessage sometimes erroneously thinks it is done decrypting before I reach the actual end of the message. The resultant behavior is I go on to the next HTTP request, and I get the rest of the previous response where I am expecting to see the header of the new request.
The obvious solution to this is to check the contents of the decrypted message to see if we actually reached the end, and if not, try to receive more data before sending the next HTTP request. But when I do this, and try to decrypt, I get a decryption error message.
Any advice/help anyone can provide on a strategies would be appreciated. I've attached the relevant code sections for the read/decrypt process of the HTTP body -- I'm not including the header read and parsing because that is working without any problems.
do
{
// Note this receives large files OK, but I can't tell when I hit the end of the buffer, and this
// hangs. Need to consider a non-blocking socket?
// numBytesReceived = recv(windowsSocket, (char*)inputBuffer, inputBufSize, 0);
m_ErrorLog << "Next read size expected " << nextReadSize << endl;
numBytesReceived = recv(windowsSocket, (char*)inputBuffer, nextReadSize, 0);
m_ErrorLog << "NumBytesReceived = " << numBytesReceived << endl;
if (m_BinaryBufLen + numBytesReceived > m_BinaryBufAllocatedSize)
::EnlargeBinaryBuffer(m_BinaryBuffer,m_BinaryBufAllocatedSize,m_BinaryBufLen,numBytesReceived+1);
memcpy(m_BinaryBuffer+m_BinaryBufLen,inputBuffer,numBytesReceived);
m_BinaryBufLen += numBytesReceived;
lenStartDecryptedChunk = decryptedBodyLen;
do
{
// Decrypt the received data.
Buffers[0].pvBuffer = m_BinaryBuffer;
Buffers[0].cbBuffer = m_BinaryBufLen;
Buffers[0].BufferType = SECBUFFER_DATA; // Initial Type of the buffer 1
Buffers[1].BufferType = SECBUFFER_EMPTY; // Initial Type of the buffer 2
Buffers[2].BufferType = SECBUFFER_EMPTY; // Initial Type of the buffer 3
Buffers[3].BufferType = SECBUFFER_EMPTY; // Initial Type of the buffer 4
Message.ulVersion = SECBUFFER_VERSION; // Version number
Message.cBuffers = 4; // Number of buffers - must contain four SecBuffer structures.
Message.pBuffers = Buffers; // Pointer to array of buffers
scRet = m_pSSPI->DecryptMessage(phContext, &Message, 0, NULL);
if (scRet == SEC_E_INCOMPLETE_MESSAGE)
break;
if( scRet == SEC_I_CONTEXT_EXPIRED )
{
m_ErrorLog << "Server shut down connection before I finished reading" << endl;
m_ErrorLog << "# of Bytes Requested = " << nextReadSize << endl;
m_ErrorLog << "# of Bytes received = " << numBytesReceived << endl;
m_ErrorLog << "Decrypted data to this point = " << endl;
m_ErrorLog << decryptedBody << endl;
m_ErrorLog << "BinaryData just decrypted: " << endl;
m_ErrorLog << Buffers[0].pvBuffer << endl;
break; // Server signalled end of session
}
if( scRet != SEC_E_OK &&
scRet != SEC_I_RENEGOTIATE &&
scRet != SEC_I_CONTEXT_EXPIRED )
{
DisplaySECError((DWORD)scRet,errmsg);
m_ErrorLog << "CSISPDoc::ReadDecrypt(): " << "Failed to decrypt message--Error=" << errmsg;
if (decryptedBody)
m_ErrorLog << decryptedBody << endl;
return scRet;
}
// Locate data and (optional) extra buffers.
pDataBuffer = NULL;
pExtraBuffer = NULL;
for(i = 1; i < 4; i++)
{
if( pDataBuffer == NULL && Buffers[i].BufferType == SECBUFFER_DATA )
pDataBuffer = &Buffers[i];
if( pExtraBuffer == NULL && Buffers[i].BufferType == SECBUFFER_EXTRA )
pExtraBuffer = &Buffers[i];
}
// Display the decrypted data.
if(pDataBuffer)
{
length = pDataBuffer->cbBuffer;
if( length ) // check if last two chars are CR LF
{
buff = (PBYTE)pDataBuffer->pvBuffer; // printf( "n-2= %d, n-1= %d \n", buff[length-2], buff[length-1] );
if (decryptedBodyLen+length+1 > decryptedBodyAllocatedSize)
::EnlargeBuffer(decryptedBody,decryptedBodyAllocatedSize,decryptedBodyLen,length+1);
memcpy_s(decryptedBody+decryptedBodyLen,decryptedBodyAllocatedSize-decryptedBodyLen,buff,length);
decryptedBodyLen += length;
m_ErrorLog << buff << endl;
}
}
// Move any "extra" data to the input buffer -- this has not yet been decrypted.
if(pExtraBuffer)
{
MoveMemory(m_BinaryBuffer, pExtraBuffer->pvBuffer, pExtraBuffer->cbBuffer);
m_BinaryBufLen = pExtraBuffer->cbBuffer; // printf("inputStrLen= %d \n", inputStrLen);
}
}
while (pExtraBuffer);
if (decryptedBody)
{
if (incompletePacket)
p1 = decryptedBody + lenStartFragmentedPacket;
else
p1 = decryptedBody + lenStartDecryptedChunk;
p2 = p1;
pEndDecryptedBody = decryptedBody+decryptedBodyLen;
if (lastDecryptRes != SEC_E_INCOMPLETE_MESSAGE)
chunkSizeBlock = true;
do
{
while (p2 < pEndDecryptedBody && (*p2 != '\r' || *(p2+1) != '\n'))
p2++;
// if we're here, we probably found the end of the current line. The pattern we are
// reading is chunk length, chunk, chunk length, chunk,...,chunk lenth (==0)
if (*p2 == '\r' && *(p2+1) == '\n') // new line character -- found chunk size
{
if (chunkSizeBlock) // reading the size of the chunk
{
pStartHexNum = SkipWhiteSpace(p1,p2);
pEndHexNum = SkipWhiteSpaceBackwards(p1,p2);
chunkSize = HexCharToInt(pStartHexNum,pEndHexNum);
p2 += 2; // skip past the newline character
chunkSizeBlock = false;
if (!chunkSize) // chunk size of 0 means we're done
{
bulkReadDone = true;
p2 += 2; // skip past the final CR+LF
}
nextReadSize = chunkSize+8; // chunk + CR/LF + next chunk size (4 hex digits) + CR/LF + encryption header/trailer
}
else // copy the actual chunk
{
if (p2-p1 != chunkSize)
{
m_ErrorLog << "Warning: Actual chunk size of " << p2 - p1 << " != stated chunk size = " << chunkSize << endl;
}
else
{
// copy over the actual chunk data //
if (m_HTTPBodyLen + chunkSize > m_HTTPBodyAllocatedSize)
::EnlargeBuffer(m_HTTPBody,m_HTTPBodyAllocatedSize,m_HTTPBodyLen,chunkSize+1);
memcpy_s(m_HTTPBody+m_HTTPBodyLen,m_HTTPBodyAllocatedSize,p1,chunkSize);
m_HTTPBodyLen += chunkSize;
m_HTTPBody[m_HTTPBodyLen] = 0; // null-terminate
p2 += 2; // skip over chunk and end of line characters
chunkSizeBlock = true;
chunkSize = 0;
incompletePacket = false;
lenStartFragmentedPacket = 0;
}
}
p1 = p2; // move to start of next chunk field
}
else // got to end of encrypted body with no CR+LF found --> fragmeneted chunk. So we need to read and decrypt at least one more chunk
{
incompletePacket = true;
lenStartFragmentedPacket = p1-decryptedBody;
}
}
while (p2 < pEndDecryptedBody);
lastDecryptRes = scRet;
}
}
while (scRet == SEC_E_INCOMPLETE_MESSAGE && !bulkReadDone);
TLS does not support byte-by-byte decryption.
TLS 1.2 breaks its input into blocks of up to 16 kiB, then encrypts them into ciphertext blocks that are slightly larger due to the need for encryption IVs/nonces and integrity protection tags/MACs. It is not possible to decrypt a block until the entire block is available. You can find the full details at https://www.rfc-editor.org/rfc/rfc5246#section-6.2.
Since you're already able to decrypt the first few blocks (containing the headers), you should be able to read the HTTP length so that you at least know the plaintext length that you're expecting, which you can then compare to the number of bytes that you've decrypted from the stream. That won't tell you how many bytes of ciphertext you need, though -- you can get an upper bound on the size of a fragment by calling m_pSPPI->QueryContextAttributes() and then should read either at least that number of bytes or until end of stream before trying to decrypt.
Have you tried looking at other examples? http://www.coastrd.com/c-schannel-smtp appears to contain a detailed example of an SChannel-based TLS client.
I was finally able to figure this out. I fixed this by decrypting each TCP/IP packet as it came in to check for the CR+LF+CR+LF in the decrypted packet instead of what I had been doing -- trying to consolidate all of the encrypted packets into one buffer prior to decrypting it.
On the "hang" problem, what I thought was happening was that recv() wasn't returning because the amount of data actually received was smaller than my expected receive size. But what actually happened was I had actually received the entire transmission, but I didn't realize it. Thus, I was making additional recv() calls when there was actually no more data to receive. The fact that there was no more data to receive was what caused the connection to time out (causing a "hang").
The truncation problem was occurring because I couldn't detect the CR+LF+CR+LF sequence in the encrypted stream, and I erroneously thought SChannel returned SEC_E_OK on DecryptMessage() only when the entire response was processed.
Both problems were eliminated once I was able to detect the true end of the message by decrypting in piecemeal fashion vs. in bulk.
In order to figure this out, I had to completely restructure the sample SChannel code from www.coastRD.com. While the www.coastRD.com code was very helpful in general, it was written for SMTP transfers, not chunked HTTP encoding. In addition, the way it was written, it was hard to follow the logic for processing variations in how messages were received and processed. Lastly, I spent a lot of time "hacking" Schannel to understand how it behaves and which codes are returned under which conditions, because unfortunately none of that is discussed in any of the Microsoft documentation (that I've seen).
The first thing I needed to understand was how SChannel tries to decrypt a message. In Schannel, the 1st 13 bytes of an encrypted message are the encryption header, and the last 16 bytes are the encryption trailer. I still don't know what the trailer does, but I did realize that the encryption header is never actually encrypted/decrypted. The 1st 5 bytes are just the TLS record header for "application data" (hex code 0x17), followed by two bytes defining the TLS version used, followed by 2 bytes of the TLS record fragment size, followed by leading 0s and one byte which I still haven't figured out.
The reason this matters is that DecryptMessage() only works if the record type is "application data". For any other record type (such as a TLS handshake "finished message), DecryptMessage() won't even try to decrypt it-- it will just return a SEC_E_DECRYPT_FAILURE code.
In addition, I needed to understand that DecryptMessage() often can't decrypt the entire contents of the receive buffer in one pass when using chunked transfer encoding. In order to successfully process the entire contents of the receive buffer and the remainder of the server HTTPS response, I needed to understand two key return codes from DecryptMessage() -- SEC_E_OK and SEC_E_INCOMPLETE_MESSAGE.
When I received SEC_E_OK, it meant DecryptMessage() was able to successfully decrypt at least part of the receive buffer. When this occurred, the 1st 13 bytes (the encryption header) remained unchanged. However, the bytes immediately following the header were decrypted in-place, followed by the encryption trailer (which is also unchanged). Often, there will be additional encrypted data still in the receive buffer after the end of the encryption trailer, which is also unchanged.
Since I was using the SecBufferDesc output buffer structures and 4 SecBuffer structures described in www.coastRD.com's code, I needed to understand that these are not actually 4 separate buffers -- they are just pointers to different locations within the receive buffer. The first buffer is a pointer to the encryption header. The second buffer is a pointer to the beginning of the decrypted data. The 3rd buffer is a pointer to the beginning of the encryption trailer. Lastly, the 4th buffer is a pointer to the "extra" encrypted data that DecryptMessage() was not able to process on the last call.
Once I figured that out, I realized that I needed to copy the decrypted data (the pointer in the second buffer) into a separate buffer, because the receive buffer would probably be overwritten later.
If there was no "extra" data in the 4th buffer, I was done done for the moment -- but this was the exception rather than the rule.
If there was extra data (the usual case), I needed to move that data forward to the very beginning of the receive buffer, and I needed to call DecryptMessage() again. This decrypted the next chunk, and I appended that data to the data I already copied to the separate buffer, and repeated this process until there was either no more data left in the receive buffer to decrypt, or I received a SEC_E_INCOMPLETE_MESSAGE.
If I received a SEC_E_INCOMPLETE_MESSAGE, the data remaining in the receive buffer was unchanged. It wasn't decrypted because it was an incomplete encryption block. Thus, I needed to call recv() again to get more encrypted data from the server to complete the encryption block.
Once that occurred, I appended newly received data to the receive buffer. I appended it to the contents of the receive buffer vs. overwriting it because the latter approach would have overwritten the beginning of the encryption block, producing a SEC_E_DECRYPT_FAILURE message the next time I called DecryptMessage().
Once I appended this new block of data to the receive buffer, I repeated the steps above to decrypt the contents of the receive buffer, and continued to repeat this whole process until I got a SEC_E_OK message on the last chunk of data left in the receive buffer.
But I wasn't necessarily done yet -- there may still be data being sent by the server. Stopping at this point is what caused the truncation issue I had occasionally encountered.
So I now checked the last 4 bytes of the decrypted data to look for CR+LF+CR+LF. If I found that sequence, I knew I had received and decrypted a complete HTTPS response.
But if I hadn't, I needed to call recv() again and repeat the process above until I saw the CR+LF+FR+LF sequence at the end of the data.
Once I implemented this process, I was able to definitively identify the end of the encrypted HTTPS response, which prevented me from making an unnecessary recv() call when no data was remaining, preventing a "hang", as well as prematurely truncating the response.
I apologize for the long answer, but given the lack of documentation on SChannel and its functions like DecryptMessage(), I thought this description of what I learned might be helpful to others who may have also been struggling to use SChannel to process TLS HTTP responses.
Thank you again to user3553031 for trying to help me with this over 7 months ago -- those attempts helped me narrow down the problem.
It is my first attempt to implement recursion with CUDA. The goal is to extract all the combinations from a set of chars "12345" using the power of CUDA to parallelize dynamically the task. Here is my kernel:
__device__ char route[31] = { "_________________________"};
__device__ char init[6] = { "12345" };
__global__ void Recursive(int depth) {
// up to depth 6
if (depth == 5) return;
// newroute = route - idx
int x = depth * 6;
printf("%s\n", route);
int o = 0;
int newlen = 0;
for (int i = 0; i<6; ++i)
{
if (i != threadIdx.x)
{
route[i+x-o] = init[i];
newlen++;
}
else
{
o = 1;
}
}
Recursive<<<1,newlen>>>(depth + 1);
}
__global__ void RecursiveCount() {
Recursive <<<1,5>>>(0);
}
The idea is to exclude 1 item (the item corresponding to the threadIdx) in each different thread. In each recursive call, using the variable depth, it works over a different base (variable x) on the route device variable.
I expect the kernel prompts something like:
2345_____________________
1345_____________________
1245_____________________
1234_____________________
2345_345_________________
2345_245_________________
2345_234_________________
2345_345__45_____________
2345_345__35_____________
2345_345__34_____________
..
2345_245__45_____________
..
But it prompts ...
·_____________
·_____________
·_____________
·_____________
·_____________
·2345
·2345
·2345
·2345
...
What I´m doing wrong?
What I´m doing wrong?
I may not articulate every problem with your code, but these items should get you a lot closer.
I recommend providing a complete example. In my view it is basically required by Stack Overflow, see item 1 here, note use of the word "must". Your example is missing any host code, including the original kernel call. It's only a few extra lines of code, why not include it? Sure, in this case, I can deduce what the call must have been, but why not just include it? Anyway, based on the output you indicated, it seems fairly evident the launch configuration of the host launch would have to be <<<1,1>>>.
This doesn't seem to be logical to me:
I expect the kernel prompts something like:
2345_____________________
The very first thing your kernel does is print out the route variable, before making any changes to it, so I would expect _____________________. However we can "fix" this by moving the printout to the end of the kernel.
You may be confused about what a __device__ variable is. It is a global variable, and there is only one copy of it. Therefore, when you modify it in your kernel code, every thread, in every kernel, is attempting to modify the same global variable, at the same time. That cannot possibly have orderly results, in any thread-parallel environment. I chose to "fix" this by making a local copy for each thread to work on.
You have an off-by-1 error, as well as an extent error in this loop:
for (int i = 0; i<6; ++i)
The off-by-1 error is due to the fact that you are iterating over 6 possible items (that is, i can reach a value of 5) but there are only 5 items in your init variable (the 6th item being a null terminator. The correct indexing starts out over 0-4 (with one of those being skipped). On subsequent iteration depths, its necessary to reduce this indexing extent by 1. Note that I've chosen to fix the first error here by increasing the length of init. There are other ways to fix, of course. My method inserts an extra _ between depths in the result.
You assume that at each iteration depth, the correct choice of items is the same, and in the same order, i.e. init. However this is not the case. At each depth, the choices of items must be selected not from the unchanging init variable, but from the choices passed from previous depth. Therefore we need a local, per-thread copy of init also.
A few other comments about CUDA Dynamic Parallelism (CDP). When passing pointers to data from one kernel scope to a child scope, local space pointers cannot be used. Therefore I allocate for the local copy of route from the heap, so it can be passed to child kernels. init can be deduced from route, so we can use an ordinary local variable for myinit.
You're going to quickly hit some dynamic parallelism (and perhaps memory) limits here if you continue this. I believe the total number of kernel launches for this is 5^5, which is 3125 (I'm doing this quickly, I may be mistaken). CDP has a pending launch limit of 2000 kernels by default. We're not hitting this here according to what I see, but you'll run into that sooner or later if you increase the depth or width of this operation. Furthermore, in-kernel allocations from the device heap are by default limited to 8KB. I don't seem to be hitting that limit, but probably I am, so my design should probably be modified to fix that.
Finally, in-kernel printf output is limited to the size of a particular buffer. If this technique is not already hitting that limit, it will soon if you increase the width or depth.
Here is a worked example, attempting to address the various items above. I'm not claiming it is defect free, but I think the output is closer to your expectations. Note that due to character limits on SO answers, I've truncated/excerpted some of the output.
$ cat t1639.cu
#include <stdio.h>
__device__ char route[31] = { "_________________________"};
__device__ char init[7] = { "12345_" };
__global__ void Recursive(int depth, const char *oroute) {
char *nroute = (char *)malloc(31);
char myinit[7];
if (depth == 0) memcpy(myinit, init, 6);
else memcpy(myinit, oroute+(depth-1)*6, 6);
myinit[6] = 0;
if (nroute == NULL) {printf("oops\n"); return;}
memcpy(nroute, oroute, 30);
nroute[30] = 0;
// up to depth 6
if (depth == 5) return;
// newroute = route - idx
int x = depth * 6;
//printf("%s\n", nroute);
int o = 0;
int newlen = 0;
for (int i = 0; i<(6-depth); ++i)
{
if (i != threadIdx.x)
{
nroute[i+x-o] = myinit[i];
newlen++;
}
else
{
o = 1;
}
}
printf("%s\n", nroute);
Recursive<<<1,newlen>>>(depth + 1, nroute);
}
__global__ void RecursiveCount() {
Recursive <<<1,5>>>(0, route);
}
int main(){
RecursiveCount<<<1,1>>>();
cudaDeviceSynchronize();
}
$ nvcc -o t1639 t1639.cu -rdc=true -lcudadevrt -arch=sm_70
$ cuda-memcheck ./t1639
========= CUDA-MEMCHECK
2345_____________________
1345_____________________
1245_____________________
1235_____________________
1234_____________________
2345__345________________
2345__245________________
2345__235________________
2345__234________________
2345__2345_______________
2345__345___45___________
2345__345___35___________
2345__345___34___________
2345__345___345__________
2345__345___45____5______
2345__345___45____4______
2345__345___45____45_____
2345__345___45____5______
2345__345___45____5_____5
2345__345___45____4______
2345__345___45____4_____4
2345__345___45____45____5
2345__345___45____45____4
2345__345___35____5______
2345__345___35____3______
2345__345___35____35_____
2345__345___35____5______
2345__345___35____5_____5
2345__345___35____3______
2345__345___35____3_____3
2345__345___35____35____5
2345__345___35____35____3
2345__345___34____4______
2345__345___34____3______
2345__345___34____34_____
2345__345___34____4______
2345__345___34____4_____4
2345__345___34____3______
2345__345___34____3_____3
2345__345___34____34____4
2345__345___34____34____3
2345__345___345___45_____
2345__345___345___35_____
2345__345___345___34_____
2345__345___345___45____5
2345__345___345___45____4
2345__345___345___35____5
2345__345___345___35____3
2345__345___345___34____4
2345__345___345___34____3
2345__245___45___________
2345__245___25___________
2345__245___24___________
2345__245___245__________
2345__245___45____5______
2345__245___45____4______
2345__245___45____45_____
2345__245___45____5______
2345__245___45____5_____5
2345__245___45____4______
2345__245___45____4_____4
2345__245___45____45____5
2345__245___45____45____4
2345__245___25____5______
2345__245___25____2______
2345__245___25____25_____
2345__245___25____5______
2345__245___25____5_____5
2345__245___25____2______
2345__245___25____2_____2
2345__245___25____25____5
2345__245___25____25____2
2345__245___24____4______
2345__245___24____2______
2345__245___24____24_____
2345__245___24____4______
2345__245___24____4_____4
2345__245___24____2______
2345__245___24____2_____2
2345__245___24____24____4
2345__245___24____24____2
2345__245___245___45_____
2345__245___245___25_____
2345__245___245___24_____
2345__245___245___45____5
2345__245___245___45____4
2345__245___245___25____5
2345__245___245___25____2
2345__245___245___24____4
2345__245___245___24____2
2345__235___35___________
2345__235___25___________
2345__235___23___________
2345__235___235__________
2345__235___35____5______
2345__235___35____3______
2345__235___35____35_____
2345__235___35____5______
2345__235___35____5_____5
2345__235___35____3______
2345__235___35____3_____3
2345__235___35____35____5
2345__235___35____35____3
2345__235___25____5______
2345__235___25____2______
2345__235___25____25_____
2345__235___25____5______
2345__235___25____5_____5
2345__235___25____2______
2345__235___25____2_____2
2345__235___25____25____5
2345__235___25____25____2
2345__235___23____3______
2345__235___23____2______
2345__235___23____23_____
2345__235___23____3______
2345__235___23____3_____3
2345__235___23____2______
2345__235___23____2_____2
2345__235___23____23____3
2345__235___23____23____2
2345__235___235___35_____
2345__235___235___25_____
2345__235___235___23_____
2345__235___235___35____5
2345__235___235___35____3
2345__235___235___25____5
2345__235___235___25____2
2345__235___235___23____3
2345__235___235___23____2
2345__234___34___________
2345__234___24___________
2345__234___23___________
2345__234___234__________
2345__234___34____4______
2345__234___34____3______
2345__234___34____34_____
2345__234___34____4______
2345__234___34____4_____4
2345__234___34____3______
2345__234___34____3_____3
2345__234___34____34____4
2345__234___34____34____3
2345__234___24____4______
2345__234___24____2______
2345__234___24____24_____
2345__234___24____4______
2345__234___24____4_____4
2345__234___24____2______
2345__234___24____2_____2
2345__234___24____24____4
2345__234___24____24____2
2345__234___23____3______
2345__234___23____2______
2345__234___23____23_____
2345__234___23____3______
2345__234___23____3_____3
2345__234___23____2______
2345__234___23____2_____2
2345__234___23____23____3
2345__234___23____23____2
2345__234___234___34_____
2345__234___234___24_____
2345__234___234___23_____
2345__234___234___34____4
2345__234___234___34____3
2345__234___234___24____4
2345__234___234___24____2
2345__234___234___23____3
2345__234___234___23____2
2345__2345__345__________
2345__2345__245__________
2345__2345__235__________
2345__2345__234__________
2345__2345__345___45_____
2345__2345__345___35_____
2345__2345__345___34_____
2345__2345__345___45____5
2345__2345__345___45____4
2345__2345__345___35____5
2345__2345__345___35____3
2345__2345__345___34____4
2345__2345__345___34____3
2345__2345__245___45_____
2345__2345__245___25_____
2345__2345__245___24_____
2345__2345__245___45____5
2345__2345__245___45____4
2345__2345__245___25____5
2345__2345__245___25____2
2345__2345__245___24____4
2345__2345__245___24____2
2345__2345__235___35_____
2345__2345__235___25_____
2345__2345__235___23_____
2345__2345__235___35____5
2345__2345__235___35____3
2345__2345__235___25____5
2345__2345__235___25____2
2345__2345__235___23____3
2345__2345__235___23____2
2345__2345__234___34_____
2345__2345__234___24_____
2345__2345__234___23_____
2345__2345__234___34____4
2345__2345__234___34____3
2345__2345__234___24____4
2345__2345__234___24____2
2345__2345__234___23____3
2345__2345__234___23____2
1345__345________________
1345__145________________
1345__135________________
1345__134________________
1345__1345_______________
1345__345___45___________
1345__345___35___________
1345__345___34___________
1345__345___345__________
1345__345___45____5______
1345__345___45____4______
1345__345___45____45_____
1345__345___45____5______
1345__345___45____5_____5
1345__345___45____4______
1345__345___45____4_____4
1345__345___45____45____5
1345__345___45____45____4
1345__345___35____5______
1345__345___35____3______
1345__345___35____35_____
1345__345___35____5______
1345__345___35____5_____5
1345__345___35____3______
1345__345___35____3_____3
1345__345___35____35____5
1345__345___35____35____3
1345__345___34____4______
1345__345___34____3______
1345__345___34____34_____
1345__345___34____4______
1345__345___34____4_____4
1345__345___34____3______
1345__345___34____3_____3
1345__345___34____34____4
1345__345___34____34____3
1345__345___345___45_____
1345__345___345___35_____
1345__345___345___34_____
1345__345___345___45____5
1345__345___345___45____4
1345__345___345___35____5
1345__345___345___35____3
1345__345___345___34____4
1345__345___345___34____3
1345__145___45___________
1345__145___15___________
1345__145___14___________
1345__145___145__________
1345__145___45____5______
1345__145___45____4______
1345__145___45____45_____
1345__145___45____5______
1345__145___45____5_____5
1345__145___45____4______
1345__145___45____4_____4
1345__145___45____45____5
1345__145___45____45____4
1345__145___15____5______
1345__145___15____1______
1345__145___15____15_____
1345__145___15____5______
1345__145___15____5_____5
1345__145___15____1______
1345__145___15____1_____1
1345__145___15____15____5
1345__145___15____15____1
1345__145___14____4______
1345__145___14____1______
1345__145___14____14_____
1345__145___14____4______
1345__145___14____4_____4
1345__145___14____1______
1345__145___14____1_____1
1345__145___14____14____4
1345__145___14____14____1
1345__145___145___45_____
1345__145___145___15_____
1345__145___145___14_____
1345__145___145___45____5
1345__145___145___45____4
1345__145___145___15____5
1345__145___145___15____1
1345__145___145___14____4
1345__145___145___14____1
1345__135___35___________
1345__135___15___________
1345__135___13___________
1345__135___135__________
1345__135___35____5______
1345__135___35____3______
1345__135___35____35_____
1345__135___35____5______
1345__135___35____5_____5
1345__135___35____3______
1345__135___35____3_____3
1345__135___35____35____5
1345__135___35____35____3
1345__135___15____5______
1345__135___15____1______
1345__135___15____15_____
1345__135___15____5______
1345__135___15____5_____5
1345__135___15____1______
1345__135___15____1_____1
1345__135___15____15____5
1345__135___15____15____1
1345__135___13____3______
1345__135___13____1______
1345__135___13____13_____
1345__135___13____3______
1345__135___13____3_____3
1345__135___13____1______
1345__135___13____1_____1
1345__135___13____13____3
1345__135___13____13____1
1345__135___135___35_____
1345__135___135___15_____
1345__135___135___13_____
1345__135___135___35____5
1345__135___135___35____3
1345__135___135___15____5
1345__135___135___15____1
1345__135___135___13____3
1345__135___135___13____1
1345__134___34___________
1345__134___14___________
1345__134___13___________
1345__134___134__________
1345__134___34____4______
1345__134___34____3______
1345__134___34____34_____
1345__134___34____4______
1345__134___34____4_____4
1345__134___34____3______
1345__134___34____3_____3
1345__134___34____34____4
1345__134___34____34____3
1345__134___14____4______
1345__134___14____1______
1345__134___14____14_____
1345__134___14____4______
1345__134___14____4_____4
1345__134___14____1______
1345__134___14____1_____1
1345__134___14____14____4
1345__134___14____14____1
1345__134___13____3______
1345__134___13____1______
1345__134___13____13_____
1345__134___13____3______
1345__134___13____3_____3
1345__134___13____1______
1345__134___13____1_____1
1345__134___13____13____3
1345__134___13____13____1
1345__134___134___34_____
1345__134___134___14_____
1345__134___134___13_____
1345__134___134___34____4
1345__134___134___34____3
1345__134___134___14____4
1345__134___134___14____1
1345__134___134___13____3
1345__134___134___13____1
1345__1345__345__________
1345__1345__145__________
1345__1345__135__________
1345__1345__134__________
1345__1345__345___45_____
1345__1345__345___35_____
1345__1345__345___34_____
1345__1345__345___45____5
1345__1345__345___45____4
1345__1345__345___35____5
1345__1345__345___35____3
1345__1345__345___34____4
1345__1345__345___34____3
1345__1345__145___45_____
1345__1345__145___15_____
1345__1345__145___14_____
1345__1345__145___45____5
1345__1345__145___45____4
1345__1345__145___15____5
1345__1345__145___15____1
1345__1345__145___14____4
1345__1345__145___14____1
1345__1345__135___35_____
1345__1345__135___15_____
1345__1345__135___13_____
1345__1345__135___35____5
1345__1345__135___35____3
1345__1345__135___15____5
1345__1345__135___15____1
1345__1345__135___13____3
1345__1345__135___13____1
1345__1345__134___34_____
1345__1345__134___14_____
1345__1345__134___13_____
1345__1345__134___34____4
1345__1345__134___34____3
1345__1345__134___14____4
1345__1345__134___14____1
1345__1345__134___13____3
1345__1345__134___13____1
1245__245________________
1245__145________________
1245__125________________
1245__124________________
1245__1245_______________
1245__245___45___________
1245__245___25___________
1245__245___24___________
1245__245___245__________
1245__245___45____5______
1245__245___45____4______
1245__245___45____45_____
1245__245___45____5______
1245__245___45____5_____5
1245__245___45____4______
1245__245___45____4_____4
1245__245___45____45____5
1245__245___45____45____4
1245__245___25____5______
1245__245___25____2______
1245__245___25____25_____
1245__245___25____5______
1245__245___25____5_____5
1245__245___25____2______
1245__245___25____2_____2
1245__245___25____25____5
1245__245___25____25____2
1245__245___24____4______
1245__245___24____2______
1245__245___24____24_____
1245__245___24____4______
1245__245___24____4_____4
1245__245___24____2______
1245__245___24____2_____2
1245__245___24____24____4
1245__245___24____24____2
1245__245___245___45_____
1245__245___245___25_____
1245__245___245___24_____
1245__245___245___45____5
1245__245___245___45____4
1245__245___245___25____5
1245__245___245___25____2
1245__245___245___24____4
1245__245___245___24____2
1245__145___45___________
1245__145___15___________
1245__145___14___________
1245__145___145__________
1245__145___45____5______
1245__145___45____4______
1245__145___45____45_____
1245__145___45____5______
1245__145___45____5_____5
1245__145___45____4______
...
1235__1235__235___25_____
1235__1235__235___23_____
1235__1235__235___35____5
1235__1235__235___35____3
1235__1235__235___25____5
1235__1235__235___25____2
1235__1235__235___23____3
1235__1235__235___23____2
1235__1235__135___35_____
1235__1235__135___15_____
1235__1235__135___13_____
1235__1235__135___35____5
1235__1235__135___35____3
1235__1235__135___15____5
1235__1235__135___15____1
1235__1235__135___13____3
1235__1235__135___13____1
1235__1235__125___25_____
1235__1235__125___15_____
1235__1235__125___12_____
1235__1235__125___25____5
1235__1235__125___25____2
1235__1235__125___15____5
1235__1235__125___15____1
1235__1235__125___12____2
1235__1235__125___12____1
1235__1235__123___23_____
1235__1235__123___13_____
1235__1235__123___12_____
1235__1235__123___23____3
1235__1235__123___23____2
1235__1235__123___13____3
1235__1235__123___13____1
1235__1235__123___12____2
1235__1235__123___12____1
1234__234________________
1234__134________________
1234__124________________
1234__123________________
1234__1234_______________
1234__234___34___________
1234__234___24___________
1234__234___23___________
1234__234___234__________
1234__234___34____4______
1234__234___34____3______
1234__234___34____34_____
1234__234___34____4______
1234__234___34____4_____4
1234__234___34____3______
1234__234___34____3_____3
1234__234___34____34____4
1234__234___34____34____3
1234__234___24____4______
1234__234___24____2______
1234__234___24____24_____
1234__234___24____4______
1234__234___24____4_____4
1234__234___24____2______
1234__234___24____2_____2
1234__234___24____24____4
1234__234___24____24____2
1234__234___23____3______
1234__234___23____2______
1234__234___23____23_____
1234__234___23____3______
1234__234___23____3_____3
1234__234___23____2______
1234__234___23____2_____2
1234__234___23____23____3
1234__234___23____23____2
1234__234___234___34_____
1234__234___234___24_____
1234__234___234___23_____
1234__234___234___34____4
1234__234___234___34____3
1234__234___234___24____4
1234__234___234___24____2
1234__234___234___23____3
1234__234___234___23____2
1234__134___34___________
1234__134___14___________
1234__134___13___________
1234__134___134__________
1234__134___34____4______
1234__134___34____3______
1234__134___34____34_____
1234__134___34____4______
1234__134___34____4_____4
1234__134___34____3______
1234__134___34____3_____3
1234__134___34____34____4
1234__134___34____34____3
1234__134___14____4______
1234__134___14____1______
1234__134___14____14_____
1234__134___14____4______
1234__134___14____4_____4
1234__134___14____1______
1234__134___14____1_____1
1234__134___14____14____4
1234__134___14____14____1
1234__134___13____3______
1234__134___13____1______
1234__134___13____13_____
1234__134___13____3______
1234__134___13____3_____3
1234__134___13____1______
1234__134___13____1_____1
1234__134___13____13____3
1234__134___13____13____1
1234__134___134___34_____
1234__134___134___14_____
1234__134___134___13_____
1234__134___134___34____4
1234__134___134___34____3
1234__134___134___14____4
1234__134___134___14____1
1234__134___134___13____3
1234__134___134___13____1
1234__124___24___________
1234__124___14___________
1234__124___12___________
1234__124___124__________
1234__124___24____4______
1234__124___24____2______
1234__124___24____24_____
1234__124___24____4______
1234__124___24____4_____4
1234__124___24____2______
1234__124___24____2_____2
1234__124___24____24____4
1234__124___24____24____2
1234__124___14____4______
1234__124___14____1______
1234__124___14____14_____
1234__124___14____4______
1234__124___14____4_____4
1234__124___14____1______
1234__124___14____1_____1
1234__124___14____14____4
1234__124___14____14____1
1234__124___12____2______
1234__124___12____1______
1234__124___12____12_____
1234__124___12____2______
1234__124___12____2_____2
1234__124___12____1______
1234__124___12____1_____1
1234__124___12____12____2
1234__124___12____12____1
1234__124___124___24_____
1234__124___124___14_____
1234__124___124___12_____
1234__124___124___24____4
1234__124___124___24____2
1234__124___124___14____4
1234__124___124___14____1
1234__124___124___12____2
1234__124___124___12____1
1234__123___23___________
1234__123___13___________
1234__123___12___________
1234__123___123__________
1234__123___23____3______
1234__123___23____2______
1234__123___23____23_____
1234__123___23____3______
1234__123___23____3_____3
1234__123___23____2______
1234__123___23____2_____2
1234__123___23____23____3
1234__123___23____23____2
1234__123___13____3______
1234__123___13____1______
1234__123___13____13_____
1234__123___13____3______
1234__123___13____3_____3
1234__123___13____1______
1234__123___13____1_____1
1234__123___13____13____3
1234__123___13____13____1
1234__123___12____2______
1234__123___12____1______
1234__123___12____12_____
1234__123___12____2______
1234__123___12____2_____2
1234__123___12____1______
1234__123___12____1_____1
1234__123___12____12____2
1234__123___12____12____1
1234__123___123___23_____
1234__123___123___13_____
1234__123___123___12_____
1234__123___123___23____3
1234__123___123___23____2
1234__123___123___13____3
1234__123___123___13____1
1234__123___123___12____2
1234__123___123___12____1
1234__1234__234__________
1234__1234__134__________
1234__1234__124__________
1234__1234__123__________
1234__1234__234___34_____
1234__1234__234___24_____
1234__1234__234___23_____
1234__1234__234___34____4
1234__1234__234___34____3
1234__1234__234___24____4
1234__1234__234___24____2
1234__1234__234___23____3
1234__1234__234___23____2
1234__1234__134___34_____
1234__1234__134___14_____
1234__1234__134___13_____
1234__1234__134___34____4
1234__1234__134___34____3
1234__1234__134___14____4
1234__1234__134___14____1
1234__1234__134___13____3
1234__1234__134___13____1
1234__1234__124___24_____
1234__1234__124___14_____
1234__1234__124___12_____
1234__1234__124___24____4
1234__1234__124___24____2
1234__1234__124___14____4
1234__1234__124___14____1
1234__1234__124___12____2
1234__1234__124___12____1
1234__1234__123___23_____
1234__1234__123___13_____
1234__1234__123___12_____
1234__1234__123___23____3
1234__1234__123___23____2
1234__1234__123___13____3
1234__1234__123___13____1
1234__1234__123___12____2
1234__1234__123___12____1
========= ERROR SUMMARY: 0 errors
$
The answer given by Robert Crovella is correct at the 5th point, the mistake was in the using of init in every recursive call, but I want to clarify something that can be useful for other beginners with CUDA.
I used this variable because when I tried to launch a child kernel passing a local variable I always got the exception: Error: a pointer to local memory cannot be passed to a launch as an argument.
As I´m C# expert developer I´m not used to using pointers (Ref does the low-level-work for that) so I thought there was no way to do it in CUDA/c programming.
As Robert shows in its code it is possible copying the pointer with memalloc for using it as a referable argument.
Here is a kernel simplified as an example of deep recursion.
__device__ char init[6] = { "12345" };
__global__ void Recursive(int depth, const char* route) {
// up to depth 6
if (depth == 5) return;
//declaration for a referable argument (point 6)
char* newroute = (char*)malloc(6);
memcpy(newroute, route, 5);
int o = 0;
int newlen = 0;
for (int i = 0; i < (6 - depth); ++i)
{
if (i != threadIdx.x)
{
newroute[i - o] = route[i];
newlen++;
}
else
{
o = 1;
}
}
printf("%s\n", newroute);
Recursive <<<1, newlen>>>(depth + 1, newroute);
}
__global__ void RecursiveCount() {
Recursive <<<1, 5>>>(0, init);
}
I don't add the main call because I´m using ManagedCUDA for C# but as Robert says it can be figured-out how the call RecursiveCount is.
About ending arrays of char with /0 ... sorry but I don't know exactly what is the benefit; this code works fine without them.
CONTEXT
I'm using a code written to work with a GPS module that connects to the Arduino through serial communication. The module starts each packet with a header (0xb5, 0x62), continues with the information you requested and ends with to bytes of checksum, CK_A, and CK_B. I don't understand the code that calculates that checksum. More info about the algorithm of checksum (8-Bit Fletcher Algorithm) in the module protocol (https://www.u-blox.com/sites/default/files/products/documents/u-blox7-V14_ReceiverDescriptionProtocolSpec_%28GPS.G7-SW-12001%29_Public.pdf), page 74 (87 with index).
MORE INFO
Just wanted to understand the code, it works fine. In the UBX protocol, I mentioned there is also a piece of code that explains how it works (isn't write in c++)
struct NAV_POSLLH {
//Here goes the struct
};
NAV_POSLLH posllh;
void calcChecksum(unsigned char* CK) {
memset(CK, 0, 2);
for (int i = 0; i < (int)sizeof(NAV_POSLLH); i++) {
CK[0] += ((unsigned char*)(&posllh))[i];
CK[1] += CK[0];
}
}
In the link you provide, you can find a link to RFC 1145, containing that Fletcher 8 bit algorithm as well and explaining
It can be shown that at the end of the loop A will contain the 8-bit
1's complement sum of all octets in the datagram, and that B will
contain (n)*D[0] + (n-1)*D[1] + ... + D[n-1].
n = sizeof byte D[];
Quote adjusted to C syntax
Try it with a couple of bytes, pen and paper, and you'll see :)
I'm having trouble calculating the MAC of the finished message.The RFC gives the formula
HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.type +
TLSCompressed.version + TLSCompressed.length +
TLSCompressed.fragment));
But the tlsCompressed(tlsplaintext in this case because no compression is used) does not contain version information:(hex dump)
14 00 00 0c 2c 93 e6 c5 d1 cb 44 12 bd a0 f9 2d
the first byte is the tlsplaintext.type, followed by uint24 length.
The full message, with the MAC and padding appended and before encryption is
1400000c2c93e6c5d1cb4412bda0f92dbc175a02daab04c6096da8d4736e7c3d251381b10b
I have tried to calculate the hmac with the following parameters(complying to the rfc) but it does not work:
uint64 seq_num
uint8 tlsplaintext.type
uint8 tlsplaintext.version_major
uint8 tlscompressed.version_minor
uint16 tlsplaintext.length
opaque tlsplaintext.fragment
I have also tried omitting the version and using uint24 length instead.no luck.
My hmac_hash() function cannot be the problem because it has worked thus far. I am also able to compute the verify_data and verify it.
Because this is the first message sent under the new connection state, the sequence number is 0.
So, what exactly are the parameters for the calculation of the MAC for the finished message?
Here's the relevant source from Forge (JS implementation of TLS 1.0):
The HMAC function:
var hmac_sha1 = function(key, seqNum, record) {
/* MAC is computed like so:
HMAC_hash(
key, seqNum +
TLSCompressed.type +
TLSCompressed.version +
TLSCompressed.length +
TLSCompressed.fragment)
*/
var hmac = forge.hmac.create();
hmac.start('SHA1', key);
var b = forge.util.createBuffer();
b.putInt32(seqNum[0]);
b.putInt32(seqNum[1]);
b.putByte(record.type);
b.putByte(record.version.major);
b.putByte(record.version.minor);
b.putInt16(record.length);
b.putBytes(record.fragment.bytes());
hmac.update(b.getBytes());
return hmac.digest().getBytes();
};
The function that creates the Finished record:
tls.createFinished = function(c) {
// generate verify_data
var b = forge.util.createBuffer();
b.putBuffer(c.session.md5.digest());
b.putBuffer(c.session.sha1.digest());
// TODO: determine prf function and verify length for TLS 1.2
var client = (c.entity === tls.ConnectionEnd.client);
var sp = c.session.sp;
var vdl = 12;
var prf = prf_TLS1;
var label = client ? 'client finished' : 'server finished';
b = prf(sp.master_secret, label, b.getBytes(), vdl);
// build record fragment
var rval = forge.util.createBuffer();
rval.putByte(tls.HandshakeType.finished);
rval.putInt24(b.length());
rval.putBuffer(b);
return rval;
};
The code to handle a Finished message is a bit lengthier and can be found here. I see that I have a comment in that code that sounds like it might be relevant to your problem:
// rewind to get full bytes for message so it can be manually
// digested below (special case for Finished messages because they
// must be digested *after* handling as opposed to all others)
Does this help you spot anything in your implementation?
Update 1
Per your comments, I wanted to clarify how TLSPlainText works. TLSPlainText is the main "record" for the TLS protocol. It is the "wrapper" or "envelope" for content-specific types of messages. It always looks like this:
struct {
ContentType type;
ProtocolVersion version;
uint16 length;
opaque fragment[TLSPlaintext.length];
} TLSPlaintext;
So it always has a version. A Finished message is a type of handshake message. All handshake messages have a content type of 22. A handshake message looks like this:
struct {
HandshakeType msg_type;
uint24 length;
body
} Handshake;
A Handshake message is yet another envelope/wrapper for other messages, like the Finished message. In this case, the body will be a Finished message (HandshakeType 20), which looks like this:
struct {
opaque verify_data[12];
} Finished;
To actually send a Finished message, you have to wrap it up in a Handshake message envelope, and then like any other message, you have to wrap it up in a TLS record (TLSPlainText). The ultimate result looks/represents something like this:
struct {
ContentType type=22;
ProtocolVersion version=<major, minor>;
uint16 length=<length of fragment>;
opaque fragment=<struct {
HandshakeType msg_type=20;
uint24 length=<length of finished message>;
body=<struct {
opaque verify_data[12]>;
} Finished>
} Handshake>
} TLSPlainText;
Then, before transport, the record may be altered. You can think of these alterations as operations that take a record and transform its fragment (and fragment length). The first operation compresses the fragment. After compression you compute the MAC, as described above and then append that to the fragment. Then you encrypt the fragment (adding the appropriate padding if using a block cipher) and replace it with the ciphered result. So, when you're finished, you've still got a record with a type, version, length, and fragment, but the fragment is encrypted.
So, just so we're clear, when you're computing the MAC for the Finished message, imagine passing in the above TLSPlainText (assuming there's no compression as you indicated) to a function. This function takes this TLSPlainText record, which has properties for type, version, length, and fragment. The HMAC function above is run on the record. The HMAC key and sequence number (which is 0 here) are provided via the session state. Therefore, you can see that everything the HMAC function needs is available.
In any case, hopefully this better explains how the protocol works and that will maybe reveal what's going wrong with your implementation.