Process utilizes more than one core? - process

Having a dual-core CPU, I notice (on the Windows Task Manager) that some processes can take more than 50% CPU utilization. Knowing that each process can be executed in one cpu core at any given time, I'm expecting that it will utilize maximum 1/n of my n-core cpu. Note that my CPU is not HT capable. Do I misinterpret the value of CPU column?

If a process has multiple threads running, then you can use 100% of your CPU.
Each thread can use 100% of a single core, so you need N running threads in your process to use 100% of a N-core CPU.

Related

Java daemon process performance testing not getting consistent results

I am trying to test cpu consumption of an agent / daemon process written in Java. To avoid getting skewed by garbage collection, I keep trying longer periods for each profiling run. In the beginning I tried 15 minutes, then later arrived at 2 hours. Yet I just found out that, even with 2 hour runs, I can get very inconsistent results. - One run of 2 hours gave me cpu of 6%, another of 2 hours gave me cpu of 12%.
Any suggestions to get consistent results?
Are you controlling for CPU frequency? If there isn't much work to do, the OS (or CPU itself) might reduce the clock frequency to save power. With an aggressive power-management strategy, the CPU will always run at max when it's running at all, so looking CPU% can be meaningful.
On Linux on a Skylake or later CPU, you might set the EPP for each core to performance, to get it to run at max speed whenever it's running at all.
sudo sh -c 'for i in /sys/devices/system/cpu/cpufreq/policy[0-9]*/energy_performance_preference;do echo performance > "$i";done'
Otherwise maybe measure in core clock cycles (like Linux perf stat java ...) instead of CPU %, or at least look at average clock speed while it was running. (Lower clock speed relative to DRAM can skew things, since a cache miss stall for fewer cycles.)

Does low GPU utilization indicate bad fit for GPU acceleration?

I'm running some GPU-accelerated PyTorch code and training it against a custom dataset, but while monitoring the state of my workstation during the process, I see GPU usage along the following lines:
I have never written my own GPU primitives, but I have a long history of doing low-level optimizations for CPU-intensive workloads and my experience there makes me concerned that while pytorch/torchvision are offloading the work to the GPU, it may not be an ideal workload for GPU acceleration.
When optimizing CPU-bound code, the goal is to try and get the CPU to perform as much (meaningful) work as possible in a unit of time: a supposedly CPU-bound task that shows only 20% CPU utilization (of a single core or of all cores, depending on whether the task is parallelizable or not) is a task that is not being performed efficiently because the CPU is sitting idle when ideally it would be working towards your goal. Low CPU usage means that something other than number crunching is taking up your wall clock time, whether it's inefficient locking, heavy context switching, pipeline flushes, locking IO in the main loop, etc. which prevents the workload from properly saturating the CPU.
When looking at the GPU utilization in the chart above, and again speaking as a complete novice when it comes to GPU utilization, it strikes me that the GPU usage is extremely low and appears to be limited by the rate at which data is being copied into the GPU memory. Is this assumption correct? I would expect to see a spike in copy (to GPU) followed by an extended period of calculations/transforms, followed by a brief copy (back from the GPU), repeated ad infinitum.
I notice that despite the low (albeit constant) copy utilization, the GPU memory is constantly peaking at the 8GB limit. Can I assume the workload is being limited by the low GPU memory available (i.e. not maxing out the copy bandwidth because there's only so much that can be copied)?
Does that mean this is a workload better suited for the CPU (in this particular case with this RTX 2080 and in general with any card)?

Scheduling on multiple cores with each list in each processor vs one list that all processes share

I have a question about how scheduling is done. I know that when a system has multiple CPUs scheduling is usually done on a per processor bases. Each processor runs its own scheduler accessing a ready list of only those processes that are running on it.
So what would be the pros and cons when compared to an approach where there is a single ready list that all processors share?
Like what issues are there when assigning processes to processors and what issues might be caused if a process always lives on one processor? In terms of the mutex locking of data structures and time spent waiting on for the locks are there any issues to that?
Generally there is one, giant problem when it comes to multi-core CPU systems - cache coherency.
What does cache coherency mean?
Access to main memory is hard. Depending on the memory frequency, it can take between a few thousand to a few million cycles to access some data in RAM - that's a whole lot of time the CPU is doing no useful work. It'd be significantly better if we minimized this time as much as possible, but the hardware required to do this is expensive, and typically must be in very close proximity to the CPU itself (we're talking within a few millimeters of the core).
This is where the cache comes in. The cache keeps a small subset of main memory in close proximity to the core, allowing accesses to this memory to be several orders of magnitude faster than main memory. For reading this is a simple process - if the memory is in the cache, read from cache, otherwise read from main memory.
Writing is a bit more tricky. Writing to the cache is fast, but now main memory still holds the original value. We can update that memory, but that takes a while, sometimes even longer than reading depending on the memory type and board layout. How do we minimize this as well?
The most common way to do so is with a write-back cache, which, when written to, will flush the data contained in the cache back to main memory at some later point when the CPU is idle or otherwise not doing something. Depending on the CPU architecture, this could be done during idle conditions, or interleaved with CPU instructions, or on a timer (this is up to the designer/fabricator of the CPU).
Why is this a problem?
In a single core system, there is only one path for reads and writes to take - they must go through the cache on their way to main memory, meaning the programs running on the CPU only see what they expect - if they read a value, modified it, then read it back, it would be changed.
In a multi-core system, however, there are multiple paths for data to take when going back to main memory, depending on the CPU that issued the read or write. this presents a problem with write-back caching, since that "later time" introduces a gap in which one CPU might read memory that hasn't yet been updated.
Imagine a dual core system. A job starts on CPU 0 and reads a memory block. Since the memory block isn't in CPU 0's cache, it's read from main memory. Later, the job writes to that memory. Since the cache is write-back, that write will be made to CPU 0's cache and flushed back to main memory later. If CPU 1 then attempts to read that same memory, CPU 1 will attempt to read from main memory again, since it isn't in the cache of CPU 1. But the modification from CPU 0 hasn't left CPU 0's cache yet, so the data you get back is not valid - your modification hasn't gone through yet. Your program could now break in subtle, unpredictable, and potentially devastating ways.
Because of this, cache synchronization is done to alleviate this. Application IDs, address monitoring, and other hardware mechanisms exist to synchronize the caches between multiple CPUs. All of these methods have one common problem - they all force the CPU to take time doing bookkeeping rather than actual, useful computations.
The best method of avoiding this is actually keeping processes on one processor as much as possible. If the process doesn't migrate between CPUs, you don't need to keep the caches synchronized, as the other CPUs won't be accessing that memory at the same time (unless the memory is shared between multiple processes, but we'll not go into that here).
Now we come to the issue of how to design our scheduler, and the three main problems there - avoiding process migration, maximizing CPU utilization, and scalability.
Single Queue Multiprocessor scheduling (SQMS)
Single Queue Multiprocessor schedulers are what you suggested - one queue containing available processes, and each core accesses the queue to get the next job to run. This is fairly simple to implement, but has a couple of major drawbacks - it can cause a whole lot of process migration, and does not scale well to larger systems with more cores.
Imagine a system with four cores and five jobs, each of which takes about the same amount of time to run, and each of which is rescheduled when completed. On the first run through, CPU 0 takes job A, CPU 1 takes B, CPU 2 takes C, and CPU 3 takes D, while E is left on the queue. Let's then say CPU 0 finishes job A, puts it on the back of the shared queue, and looks for another job to do. E is currently at the front of the queue, to CPU 0 takes E, and goes on. Now, CPU 1 finishes job B, puts B on the back of the queue, and looks for the next job. It now sees A, and starts running A. But since A was on CPU 0 before, CPU 1 now needs to sync its cache with CPU 0, resulting in lost time for both CPU 0 and CPU 1. In addition, if two CPUs both finish their operations at the same time, they both need to write to the shared list, which has to be done sequentially or the list will get corrupted (just like in multi-threading). This requires that one of the two CPUs wait for the other to finish their writes, and sync their cache back to main memory, since the list is in shared memory! This problem gets worse and worse the more CPUs you add, resulting in major problems with large servers (where there can be 16 or even 32 CPU cores), and being completely unusable on supercomputers (some of which have upwards of 1000 cores).
Multi-queue Multiprocessor Scheduling (MQMS)
Multi-queue multiprocessor schedulers have a single queue per CPU core, ensuring that all local core scheduling can be done without having to take a shared lock or synchronize the cache. This allows for systems with hundreds of cores to operate without interfering with one another at every scheduling interval, which can happen hundreds of times a second.
The main issue with MQMS comes from CPU Utilization, where one or more CPU cores is doing the majority of the work, and scheduling fairness, where one of the processes on the computer is being scheduled more often than any other process with the same priority.
CPU Utilization is the biggest issue - no CPU should ever be idle if a job is scheduled. However, if all CPUs are busy, so we schedule a job to a random CPU, and a different CPU ends up becoming idle, it should "steal" the scheduled job from the original CPU to ensure every CPU is doing real work. Doing so, however, requires that we lock both CPU cores and potentially sync the cache, which may degrade any speedup we could get by stealing the scheduled job.
In conclusion
Both methods exist in the wild - Linux actually has three different mainstream scheduler algorithms, one of which is an SQMS. The choice of scheduler really depends on the way the scheduler is implemented, the hardware you plan to run it on, and the types of jobs you intend to run. If you know you only have two or four cores to run jobs, SQMS is likely perfectly adequate. If you're running a supercomputer where overhead is a major concern, then an MQMS might be the way to go. For a desktop user - just trust the distro, whether that's a Linux OS, Mac, or Windows. Generally, the programmers for the operating system you've got have done their homework on exactly what scheduler will be the best option for the typical use case of their system.
This whitepaper describes the differences between the two types of scheduling algorithms in place.

How to allocate more CPU and RAM to SUMO (Simulation of Urban Mobility)

I have downloaded and unzipped sumo-win64-0.32.0 and running sumo.exe this on a powerful machine (64GB ram, Xeon CPU E5-1650 v4 3.6GHz) for about 140k trips, 108k edges, and 25k vehicles types which are departed in the first 30 min of simulation. I have noticed that my CPU is utilized only 30% and Memory only 38%, Is there any way to increase the speed by forcing sumo to use more CPU and ram, or possibly run in parallel? From "Can SUMO be run in parallel (on multiple cores or computers)?
The simulation itself always runs on a single core."
it appears that parallel processing is not possible t, but what about dedicating more CPU and ram?
Windows usually shows the CPU utilization such that 100% means all cores are used, so 30% is probably already more than one core and there is no way of increasing that with a single threaded application as sumo. Also if your scenario fits within RAM completely there is no point of increasing that. You might want to try one of the several parallelization approaches SUMO has but none of them got further than some toy examples (and none is in the official distribution) and the speed improvements are sometimes only marginal. Probably the best you can do is to do some profiling and find the performance bottlenecks and/or send your results to the developers.

How To Let A Program Use All CPU Power In VB.NET?

I'm working on a password list generator program. This program needs to be as fast as possible. But it only uses 13% of CPU:
What should I do to make it use all CPU power available ?
Heh. I thought it might be 8 cores. The reason is that your app is running on one thread and therefore only one core is being used. 13% is about 1/8 of 100 :)
If you can split the process up into 8 separate threads, then it will use the other 7 cores.
Obviously your program is only using one thread and because of this not all cores of your CPU are used.
You have to convert your program into something multithreaded