Segment lines using pl.arrow() to show the directions - matplotlib

I have a set of segment lines AB. Point A is located in [x0,y0] = [0.0] coordinate as being radial point. B is the end of segment lines [x1,y1]. I found some answers here and I tried to adapt it to my problem.
The question: How can I plot radial segment showing that B is the end of arrow.? Because, in my code arrow sizes does exceed the plot window.
Any helps would be appreciated.
import numpy as np
import pylab as pl
def arrow_segment(AB):
for idx in range(0,len(AB)):
plt.arrow(AB[idx,0], #x1
AB[idx,1], # y1
AB[idx,2]-AB[idx,0], # x2 - x1
AB[idx,3]-AB[idx,1], # y2 - y1
color='blue',head_width=0.05, head_length=0.1)
plt.show()
AB = [[0, 0., 1., 10]]
arrow_segment(AB)

My understanding is that you're asking what to do when the arrowhead is off the plot. There are a few options:
You can draw the arrow up to the boundary and use a type of arrow head that indicates that it's not the true end of the arrow, such as a half arrow head, "shape"="left", or open vs. closed, etc.
You can draw the arrowhead midway along the arrow, like is done for a streamline. I don't know a command for this in mpl, but you could easily do it using two arrows, or just plotting a line and the head of an arrow, etc.
Edit:
For completeness, I'll add my take on a #2. Here's I plot the line, and then plot the arrow over the line, and the arrowhead can be plotted anywhere along the line and in controlled by f (between 0 and 1). The example shows a few lines plotted for f ranging from 0 to .1.
import numpy as np
import pylab as plt
def arrow_mh(v4, color, f=.5):
x0, y0, x1, y1 = v4
line = plt.plot([x0, x1], [y0, y1], color=color)
f = max(f, .0001)
dx = f*(x1-x0)
dy = f*(y1-y0)
a = plt.arrow(x0, y0, dx, dy,
color=color,head_width=0.05, head_length=0.1)
def arrow_segment(AB):
for idx in range(0,len(AB)):
arrow_mh(AB[idx], 'blue', .01*(9-idx))
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.show()
AB = np.array([[.1*i, .1, .5, 4] for i in range(10)])
arrow_segment(AB)

Related

Matplotlib: is it possible to do a stepwise stacked plot?

I'd like to make a stacked area chart but it would increase stepwise, like the stairs plot.
It is a cumulative chart, so a stepwise increase would make more sense.
How can it be done?
plt.stackplot accepts extra kwargs which are sent to plt.fill_between. One of those is step='post', creating a horizontal line starting with the given value. (In contrast, step='pre' has the horizontal lines at the height of the ending positions.)
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(1, 6)
y1 = np.random.rand(5) + 1
y2 = np.random.rand(5) + 2
y3 = np.random.rand(5) + 3
plt.stackplot(x, y1, y2, y3, step='post', labels=['A', 'B', 'C'])
plt.xticks(x)
plt.legend()
plt.show()

Matplotlib Animation : How to make a reverse animation?

I'm currently working on matplotlib animation. Currently in the plot, I have 2 circles, green and orange one. What I want to make is shrinking the green circle until it came to zero (base of the cartesian diagram). What I got was a new blue circle coming out from the (0,0) coordinate. What I have to do if I want the green circle to shrink to (0,0) since the center of the green one is (0,0) also.
Thank you for the advice
Note : I'm using the 3.9.2 python with the latest update for all the packages
My current animation:
Current code :
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig, ax = plt.subplots(1)
line, = ax.plot([], [], lw=2)
ax.set_xlim(-5,5)
ax.set_ylim(-5,5)
# Move left y-axis and bottim x-axis to centre, passing through (0,0)
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
# Eliminate upper and right axes
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
# Show ticks in the left and lower axes only
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# theta goes from 0 to 2pi
theta = np.linspace(0, 2*np.pi, 100)
# the radius of the circle
r = np.sqrt(1)
r2 = np.sqrt(4)
# compute x1 and x2
x1 = 1+r*np.cos(theta)
y1 = r*np.sin(theta)
x2 = r2*np.cos(theta)
y2 = r2*np.sin(theta)
def init():
line.set_data([], [])
return line,
def animate(i):
x2 = np.sqrt(i)*np.cos(theta)
y2 = np.sqrt(i)*np.sin(theta)
line.set_data(x2, y2)
return line,
# create the figure
ax.plot(x1,y1)
ax.plot(x2,y2)
ax.set_aspect(1)
plt.grid()
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=200, interval=10)
plt.show()
f = r"D:/UNPAR/Semester 2/Pemrograman Komputer/Project/animation.gif"
writergif = animation.PillowWriter(fps=30)
anim.save(f, writer=writergif)

grouped bar chart with broken axis in matplotlib [duplicate]

I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)

How to hide contour lines / data from a specific area on Basemap

I am working some meteorological data to plot contour lines on a basemap. The full working example code I have done earlier is here How to remove/omit smaller contour lines using matplotlib. All works fine and I don’t complain with the contour plot. However there is a special case that I have to hide all contour lines over a specific region (irregular lat & lon) on a Basemap.
The only possible solution I can think of is to draw a ploygon lines over a desired region and fill with the color of same as Basemap. After lot of search I found this link How to draw rectangles on a Basemap (code below)
from mpl_toolkits.basemap import Basemap
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def draw_screen_poly( lats, lons, m):
x, y = m( lons, lats )
xy = zip(x,y)
poly = Polygon( xy, facecolor='red', alpha=0.4 )
plt.gca().add_patch(poly)
lats = [ -30, 30, 30, -30 ]
lons = [ -50, -50, 50, 50 ]
m = Basemap(projection='sinu',lon_0=0)
m.drawcoastlines()
m.drawmapboundary()
draw_screen_poly( lats, lons, m )
plt.show()
It seems to work partially. However, I want to draw a region which is irregular.
Any solution is appreciated.
Edit: 1
I have understood where the problem is. It seems that any colour (facecolor) filled within the polygon region does not make it hide anything below. Always it is transparent only, irrespective of alpha value used or not. To illustrate the problem, I have cropped the image which has all three regions ie. contour, basemap region and polygon region. Polygon region is filled with red colour but as you can see, the contour lines are always visible. The particular line I have used in the above code is :-
poly = Polygon(xy, facecolor='red', edgecolor='b')
Therefore the problem is not with the code above. It seem the problem with the polygon fill. But still no solution for this issue. The resulting image (cropped image) is below (See my 2nd edit below the attached image):-
Edit 2:
Taking clue from this http://matplotlib.1069221.n5.nabble.com/Clipping-a-plot-inside-a-polygon-td41950.html which has the similar requirement of mine, I am able to remove some the data. However, the removed data is only from outside of polygon region instead of within. Here is the code I have taken clue from:-
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import RegularPolygon
data = np.arange(100).reshape(10, 10)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.contourf(data)
poly = RegularPolygon([ 0.5, 0.5], 6, 0.4, fc='none',
ec='k', transform=ax.transAxes)
for artist in ax.get_children():
artist.set_clip_path(poly)
Now my question is that what command is used for removing the data within the polygon region?
Didn't noticed there was a claim on this so I might just give the solution already proposed here. You can tinker with the zorder to hide stuff behind your polygon:
import matplotlib
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
# Create a simple contour plot with labels using default colors. The
# inline argument to clabel will control whether the labels are draw
# over the line segments of the contour, removing the lines beneath
# the label
fig = plt.figure()
ax = fig.add_subplot(111)
CS = plt.contour(X, Y, Z,zorder=3)
plt.clabel(CS, inline=1, fontsize=10)
plt.title('Simplest default with labels')
rect1 = matplotlib.patches.Rectangle((0,0), 2, 1, color='white',zorder=5)
ax.add_patch(rect1)
plt.show()
, the result is:

Contour/curve with orientation

How would I plot a curve (in 3d perhaps) with something to show the direction that it's going. For example, to show that a circular plane curve is going clockwise or counterclockwise.
A curve like the one here,
http://mathworld.wolfram.com/CauchyIntegralFormula.html
I am not sure even if there is a comparable function right now, so I don't have an example to show you.
Thanks for reading.
Edit: I search quite a bit on this, don't think you can do this on gnuplot either.
Interesting question. I have no time for more than a quick and dirty hack, so here we go (liberally inspired from the code in mpl streamplot)
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
def add_arrow_to_line2D(
axes, line, arrow_locs=[0.2, 0.4, 0.6, 0.8],
arrowstyle='-|>', arrowsize=1, transform=None):
"""
Add arrows to a matplotlib.lines.Line2D at selected locations.
Parameters:
-----------
axes:
line: list of 1 Line2D obbject as returned by plot command
arrow_locs: list of locations where to insert arrows, % of total length
arrowstyle: style of the arrow
arrowsize: size of the arrow
transform: a matplotlib transform instance, default to data coordinates
Returns:
--------
arrows: list of arrows
"""
if (not(isinstance(line, list)) or not(isinstance(line[0],
mlines.Line2D))):
raise ValueError("expected a matplotlib.lines.Line2D object")
x, y = line[0].get_xdata(), line[0].get_ydata()
arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize)
if transform is None:
transform = axes.transData
arrows = []
for loc in arrow_locs:
s = np.cumsum(np.sqrt(np.diff(x) ** 2 + np.diff(y) ** 2))
n = np.searchsorted(s, s[-1] * loc)
arrow_tail = (x[n], y[n])
arrow_head = (np.mean(x[n:n + 2]), np.mean(y[n:n + 2]))
p = mpatches.FancyArrowPatch(
arrow_tail, arrow_head, transform=transform,
**arrow_kw)
axes.add_patch(p)
arrows.append(p)
return arrows
fig, ax = plt.subplots(1, 1)
t = np.linspace(0., 4*np.pi, 100.)
line = ax.plot(np.log(t+1)*np.cos(t), np.log(t+1)*np.sin(t),"-")
add_arrow_to_line2D(ax, line, arrow_locs=[0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.99],
arrowsize=1.5)
ax.axis("equal")
ax.set_xlim([-4., 4.])
ax.set_ylim([-4., 4.])
plt.show()