In Lucene 4.5, how can I make sure any special characters like /,*,^ should not get ignored while generating tokens - lucene

I have a simple string 7/f and the standard tokenizer ignores / and generates term vectors as 7 and f. I wish to have 7/f as one keyword, I want to build upon the StandardTokenizer but trying to modify that code is more complex.

Related

How to assign lexical features to new unanalyzable tokens in spaCy?

I'm working with spaCy, version 2.3. I have a not-quite-regular-expression scanner which identifies spans of text which I don't want analyzed any further. I've added a pipe at the beginning of the pipeline, right after the tokenizer, which uses the document retokenizer to make these spans into single tokens. I'd like to remainder of the pipeline to treat these tokens as proper nouns. What's the right way to do this? I've set the POS and TAG attrs in my calls to retokenizer.merge(), and those settings persist in the resulting sentence parse, but the dependency information on these tokens makes me doubt that my settings have had the desired impact. Is there a way to update the vocabulary so that the POS tagger knows that the only POS option for these tokens is PROPN?
Thanks in advance.
The tagger and parser are independent (the parser doesn't use the tags as features), so modifying the tags isn't going to affect the dependency parse.
The tagger doesn't overwrite any existing tags, so if a tag is already set, it doesn't modify it. (The existing tags don't influence its predictions at all, though, so the surrounding words are tagged the same way they would be otherwise.)
Setting TAG and POS in the retokenizer is a good way to set those attributes. If you're not always retokenizing and you want to set the TAG and/or POS based on a regular expression for the token text, then the best way to do this is a custom pipeline component that you add before the tagger that sets tags for certain words.
The transition-based parsing algorithm can't easily deal with partial dependencies in the input, so there isn't a straightforward solution here. I can think of a few things that might help:
The parser does respect pre-set sentence boundaries. If your skipped tokens are between sentences, you can set token.is_sent_start = True for that token and the following token so that the skipped token always ends up in its own sentence. If the skipped tokens are in the middle of a sentence or you want them to be analyzed as nouns in the sentence, then this won't help.
The parser does use the token.norm feature, so if you set the NORM feature in the retokenizer to something extremely PROPN-like, you might have a better chance of getting the intended analysis. For example, if you're using a provided English model like en_core_web_sm, use a word you think would be a frequent similar proper noun in American newspaper text from 20 years ago, so if the skipped token should be like a last name, use "Bush" or "Clinton". It won't guarantee a better parse, but it could help.
If you using a model with vectors like en_core_web_lg, you can also set the vectors for the skipped token to be the same as a similar word (check that the similar word has a vector first). This is how to tell the model to refer to the same row in the vector table for UNKNOWN_SKIPPED as Bush.
The simpler option (that duplicates the vectors in the vector table internally):
nlp.vocab.set_vector("UNKNOWN_SKIPPED", nlp.vocab["Bush"].vector)
The less elegant version that doesn't duplicate vectors underneath:
nlp.vocab.vectors.add("UNKNOWN_SKIPPED", row=nlp.vocab["Bush"].rank)
nlp.vocab["UNKNOWN_SKIPPED"].rank = nlp.vocab["Bush"].rank
(The second line is only necessary to get this to work for a model that's currently loaded. If you save it as a custom model after the first line with nlp.to_disk() and reload it, then only the first line is necessary.)
If you just have a small set of skipped tokens, you could update the parser with some examples containing these tokens, but this can be tricky to do well without affecting the accuracy of the parser for other cases.
The NORM and vector modifications will also influence the tagger, so it's possible if you choose those well, you might get pretty close to the results you want.

Spacy tokenizer to handle final period in sentence

I'm using Spacy to tokenize sentences, and I know that the text I pass to the tokenizer will always be a single sentence.
In my tokenization rules, I would like non-final periods (".") to be attached to the text before it so I updated the suffix rules to remove the rules that split on periods (this gets abbreviations correctly).
The exception, however, is that the very last period should be split into a separate token.
I see that the latest version of Spacy allows you to split tokens after the fact, but I'd prefer to do this within the Tokenizer itself so that other pipeline components are processing the correct tokenization.
Here is one solution that uses some post processing after the tokenizer:
I added "." to suffixes so that a period is always split into its own token.
I then used a regex to find non-final periods, generated a span with doc.char_span, and merged the span to a single token with span.merge.
Would be nice to be able to do this within the tokenizer if anyone knows how to do that.

ANTLR4 - replace op boundaries error|How to use TokenStreamRewriter to transform text from two listener events on overlapping tokens in original AST?

Hello ANTLR creators/users,
Some context - I am using PlSql ANTLR4 parser to do some lightweight transpiling of some queries from oracle sql to, let's say, spark sql. I have my listener class setup which extends the base listener.
Example of an issue -
Let's say the input is something like -
SELECT to_char(to_number(substr(ATTRIBUTE_VALUE,1,4))-3)||'0101') from xyz;
Now, I'd like to replace || with CONCAT and to_char with CAST as STRING, so that the final query looks like -
SELECT CONCAT(CAST(to_number(substr(ATTRIBUTE_VALUE,1,4))-3) as STRING),'0101') from xyz;
In my listener class, I am overriding two functions from base listener to do this - concatenation and string_function. In those, I am using a tokenStreamRewriter's replace to make the necessary transformation. Since tokenStreamRewriter is evaluated lazily, I am running to issue ->
java.lang.IllegalArgumentException: replace op boundaries of
<ReplaceOp#[#38,228:234='to_char',<2193>,3:15]..[#53,276:276=')',
<2214>,3:63]:"CAST (to_number(substr(ATTRIBUTE_VALUE,1,4))-3 as STRING)">
overlap with previous <ReplaceOp#[#38,228:234='to_char',<2193>,3:15]..
[#56,279:284=''0101'',<2209>,3:66]:"CONCAT
(to_char(to_number(substr(ATTRIBUTE_VALUE,1,4))-3),'0101')">
Clearly, the issue is my two listener functions attempting to replace/transform text on overlapping boundaries.
Is there any work around for territory overlap kind of issues for ANTLR4? I'm sure folks run into such stuff all the time probably.
I'd appreciate any workarounds, even dirty ones at this point of time :)
I did realize that ANTLR4 does not allow us to modify original AST, otherwise this would have been a little bit easier to solve.
Thanks!
A look at how tokenstreamrewriter works leads to the following understanding:
first, a list of all modification operations are built
then, you invoke getText()
here, there is a reduction of modification operations. The idea for example is to merge multiple insert together in one reduction. Its role is also to avoid multiple replace on same data (but i will expand on this point later).
every token is then read, in the case there is a modification listed for the said token index, TokenStreamRewriter do the operation, otherwise it just pop the read token.
Let's have a look on how modification operations are implemented:
for insert, tokenstream rewriter basically just adds the string to be added at the current token index, and then do an index+1, effectively going to next token
for replace, tokenstream rewriter replace a range of tokens with the new string, and set the new index to the end of this range.
So, for tokenstreamrewriter, overlapping replaces are not possible, as when you replace you jump to the end of the range of tokens to be replaced. Especially, in the case you remove the checks of overlapping, then only the first replace will be operated, as afterwards, the token index is past the other replaces.
Basically, this has been done because there is no way to tell easily what tokens should be replaced while using overlapping replaces. You would need for that symbol recognition and matching.
So, what you are trying to do is the following (for each step, the part between '*' is what is modified):
*SELECT to_char(to_number(substr(ATTRIBUTE_VALUE,1,4))-3)||'0101')* from xyz;
|
V
CONCAT (*to_char(to_number(substr(ATTRIBUTE_VALUE,1,4))-3)*,'0101') from xyz;
|
V
SELECT CONCAT(CAST(to_number(substr(ATTRIBUTE_VALUE,1,4))-3) as STRING),'0101') from xyz;
to achieve your transformation, you could do so a replace of :
'to_char' -> 'CONCAT(CAST'
'||' -> ' as STRING),'
And, by using a bit of intelligence while parsing your tokens, like is there a '||' in my tokens to know if it's string, you would know what to replace.
regards
The way I solve it in multiple projects based on ANTLR is this: I translated ANTLR parse-tree to an AST written using Kolasu, an open-source library we developed at Strumenta.
Kolasu has all sort of utilities to process and mutate ASTs. For all non-trivial projects I end up doing transformations on the AST.
Kolasu

Preferentially match shorter token in ANTLR4

I'm currently attempting to write a UCUM parser using ANTLR4. My current approach has involved defining every valid unit and prefix as a token.
Here's a very small subset of the defined tokens. I could make a cut-down version of the grammar as an example, but it seems like it shouldn't be necessary to resolve this problem (or to point out that I'm going about this entirely the wrong way).
MILLI_OR_METRE: 'm' ;
OSMOLE: 'osm' ;
MONTH: 'mo' ;
SECOND: 's' ;
One of the standard testcases is mosm, from which the lexer should generate the token stream MILLI_OR_METRE OSMOLE. Unfortunately, because ANTLR preferentially matches longer tokens, it generates the token stream MONTH SECOND MILLI_OR_METRE, which then causes the parser to raise an error.
Is it possible to make an ANTLR4 lexer try to match using shorter tokens first? Adding lookahead-type rules to MONTH isn't a great solution, as there are all sorts of potential lexing conflicts that I'd need to take account of (for example mol being lexed as MONTH LITRE instead of MOLE and so on).
EDIT:
StefanA below is of course correct; this is a job for a parser capable of backtracking (eg. recursive descent, packrat, PEG and probably various others... Coco/R is one reasonable package to do this). In an attempt to avoid adding a dependency on another parser generator (or moving other bits of the project from ANTLR to this new generator) I've hacked my way around the problem like this:
MONTH: 'mo' { _input.La(1) != 's' && _input.La(1) != 'l' && _input.La(1) != '_' }? ;
// (note: this is a C# project; java would use _input.LA instead)
but this isn't really a very extensible or maintainable solution, and like as not will have introduced other subtle issues I've not come across yet.
Your problem does not require smaller tokens to be preferred (In this case MONTH would never be matched). You need a backtracking behaviour dependent on the text being matched or not. Right?
ANTLR separates tokenization and parsing strictly. Consequently every solution to your problem will seem like a hack.
However other parser generators are specialized on problems like yours. Packrat Parsers (PEG) are backtracking and allow tokenization on the fly. Try out parboiled for this purpose.
Appears that the question is not being framed correctly.
I'm currently attempting to write a UCUM parser using ANTLR4. My current approach has involved defining every valid unit and prefix as a token.
But, according to the UCUM:
The expression syntax of The Unified Code for Units of Measure generates an infinite number of codes with the consequence that it is impossible to compile a table of all valid units.
The most to expect from the lexer is an unambiguous identification of the measurement string without regard to its semantic value. Similarly, a parser alone will be unable to validly select between unit sequences like MONTH LITRE and MOLE - both could reasonably apply to a leak rate - unless the problem space is statically constrained in the parser definition.
A heuristic, structural (explicitly identifying the problem space) or contextual (considering the relative nature of other units in the problem space), is most likely required to select the correct unit interpretation.
The best tool to use is the one that puts you in the best position to implement the heuristics necessary to disambiguate the unit strings. Antlr could do it using parse-tree walkers. Whether that is the appropriate approach requires further analysis.

software\tool for checking syntax format

Im looking for a tool that can validate if a given text\paragraph subject to a specific format .
for example :
I can be able to check if the text is as following :
xxx{
sss:aaa;
}
yyy();
preferably open source tool, with easy rule sets like xml or something .
by text i mean a string that i get from i.e fgets(), or any function that reads from a file .
For something like this I'd suggest a parser (see, for instance, What is Parse/parsing?). You can build one from a definition of the language that you want to parse using a parser generator like Yacc or its free GNU equivalent Bison, or any number of other parser generators, many of which are also freely available.
Most parsers are used to transform a text that complies with a grammar into some other form (e.g. an intermediate language or a machine code) but that isn't neccesary - in your case the parser could simply say (at a minimum) "Yes" if the text conforms to a given grammar.
Parsers for simple grammars can be built by hand but, if you have the tools available, using a parser generator is easier and more robust in my experience.
Further, the text that you've shown is similar to a portion of code written in the C language (something close to a struct declaration followed by a function call), so you would be able to re-use parts of the grammar that you need from an existing Yacc grammar for C like this one.