Import compiled code into C/C++ source code for microcontroller - dll

We'd like to offer a compiled library that implement a protocol layer to be imported into C/C++ source code project for microcontrollers. And eventually expose a sort of compiled function to the source code project. let's say a sort of "dll". Is there any know technique to realize something of similar?

While it is possible to provide functions via a library, generally in the microcontroller/embedded realm it quickly becomes impractical.
Each microcontroller core will have a unique instruction set. Further, micros from the same family may have a variety of extensions which are either supported or not... So you're left with providing a library file for each individual microcontroller (from each vendor) that you'd like to support.
But...
In my experience, calling conventions between compilers are not the same. So a library compiled by one toolchain will not be able to be linked to object files created by another toolchain.
That leads you to then provide a library for each individual micro from each vendor for each toolchain someone might use. Ick. Oh, and don't rely on an OS calls either, as you don't know what you'll be linked with...
A more conventional approach is to use the same approach RTOS vendors tend to use: provide the source, and protect your IP with licensing terms. The reality is that if your end users want to, they can step through the assembly and figure out exactly what is happening, so you're not hiding your implementation that carefully anyway.

Related

How to make a normal C library work with embedded environment?

I was recently asked about how to use a C library (Cello in this case) in an embedded environment, but I'm not sure how to go about that.
Is it correct to say that if a library can be compiled in the embedded environment, it can be used?
Should I care about making the library more lightweight or something like that?
Any suggestions are appreciated.
To have it compile is the bare minimum. Notably most embedded systems are freestanding systems, such as microcontroller and RTOS applications. Compilers for freestanding systems need not provide all standard library headers, the only mandatory ones are (C17 4/6):
<float.h>, <iso646.h>, <limits.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>,
<stddef.h>, <stdint.h>, <stdnoreturn.h>
In addition, the embedded system need not support floating point arithmetic. Some systems implement software floating point support, but using that is very bad practice. If your MCU does not have a FPU, you should not be using floating point arithmetic, or you picked the wrong MCU for the task, period.
"I need to represent this number with decimals internally or to the user" is not a valid reason for using floating point. Fixed point arithmetic should be used for that. You only need floating point if you are to use math libraries like math.h and more advanced math.
Traditionally, embedded system compilers have been slow to adapt the latest C standard. It's been quite a while since C11 release now though, so at the moment all useful compilers have caught up with it (C17 only contains minor changes so we can likely ignore that one). Historically, embedded compilers have been horribly bad at this though, so remain sceptical. There shouldn't be any reason to pick a compiler without C11 support for new product development.
Summary for getting the lib to compile (bare minimum):
Does the library use hosted system headers, and if so does the embedded compiler support them?
Does the library use floating point and if so does the target system have a FPU, or at least a software floating point lib?
Does the library rely on the latest C standards and if so does the embedded compiler support them?
With that out of the way, you have to consider if the library is at all written to be portable. Did they take care with things like integer types, enums and alignment? Are they using stdint.h or are they using "sloppy typing" int all over the place? Did they consider endianess? Is the lib using dynamic allocation, which is banned in most embedded systems? Is it compatible with industry standards like MISRA-C? And so on.
Then there's optimizations to consider on top of that. Optimizing code for microcontrollers is very different than optimizing code for PC CPUs.
A brief glance at the various "compiler switches" (#ifdef) present usually gives a clue of how portable the code is. Looking (very briefly) at this cello lib, they seem to have considered porting between mainstream x86 systems but that's it. You would have to rewrite pretty much the whole lib if you were to port it to an embedded system. The work effort depends on how alien the target CPU is compared to x86. Porting to a high end Cortex-A with Little Endian might not require much effort. Porting to some low-end crap MCU would require a monumental effort.
Code portability is a big topic and requires very competent C programmers. To make the very same code run on for example a x86-64 and a crappy 8-bit MCU is not a trivial task.
Professional libs like protocol stacks usually come with a system port for a specific MCU, where they have not just taken generic portability in account, but also the specific system.
Not all libraries that can be compiled, can be used in embedded environments. Libraries that use malloc and free (or their C++ counterparts) are dangerous and therefore should be handled with care. These libraries can result in undeterministic behaviour because of memory allocations failing.
It is possible that the standard C STD could be wholly compiled for embedded devices but that doesn't mean that you'll have much use for printf or scanf. So a better question before you ask if you can compile it is should you use it. Cello seems like a fun experiment but isn't a stable platform to develop something real on. It can be done though and an example of that is the Espruino.
Most of the time it is a bad idea to rewrite a library to be 'lightweight' or more importantly in an embedded environment: statically allocated. You are probably not as smart as those people or won't put in the time needed to create a complete functional embedded fork which is as stable as the original or even better. Don't be dissuaded for a fun little side project but don't depend on it for a real project.
Another problem could be that the library is too big for your microcontroller. The Atmega32a only has 32KB of programmable flash. To take a C++ example of the top of my head: boost won't fit in that space even for all the highly useable tools that it provides.

What is the difference between libc++ and libc++abi library in LLVM?

I saw the two projects are quite related, but what are the differences between them? The official webpage doesn't tell much about it.
I know that ABI (Application Binary Interface) is used to provide low-level binary interface among different platforms. So is libc++abi used to provide different implementations for different platforms, and general interface for libc++?
Would be better go give some specific example, e.g. what are included in libc++abi and what in libc++.
Thanks.
The Application Binary Interface, or ABI for short, is intended to provide certain low level functions from which to build the C++ standard library. It is a supporting library that is a separate component from the actual standard library. Along with libcxxabi, you may also come across Pathscale's libcxxrt or GCC's libsupcxx.
On the other hand, libc++ is an implementation of the C++ standard library that can be built using either of the 3 mentioned ABIs.

Creating your own custom libraries in iOS?

I'm fairly new to programming and wanted to start programming more efficiently. Try as I may I often find myself straying from the MVC model.
I was wondering are there any tips or methods in keeping your code organized when coding in xcode objc? To be more specific (I know you guys like that :) I want to
Be able to write libraries or self-containing code that can bring from one project to another
Share my code with others as open sourced projects
Prevent myself from writing messy code that does not follow proper structure
Use a high warning level. Build cleanly.
Remove all static analyzer issues.
Write some unit tests.
Keep the public interfaces small.
Specify your library's dependencies (e.g. minimum SDK versions and dependent libraries).
Compile against multiple/supported OS versions regularly.
Learn to create and manage static library targets. This is all you should need to support and reuse the library in another project (unless you drag external resources into the picture, which becomes a pain).
No global state (e.g. singletons, global variables).
Be precise about support in multithreaded contexts (more commonly, that concurrency shall be the client's responsibility).
Document your public interface (maybe your private one too…).
Define a precise and uniform error model.
You can never have enough error detection.
Set very high standards -- Build them for reuse as reference implementations.
Determine the granularity of the libraries early on. These should be very small and focused.
Consider using C or C++ implementations for your backend/core libraries (that stuff can be stripped).
Do establish and specify any prefixes for your library's objc classes and categories. Use good prefixes too.
Minimize visible dependencies (e.g. don't #import tons of frameworks which could be hidden).
Be sure it compiles without the client needing to add additional #imports.
Don't rely on clients putting things in specific places, or that resources will have specific names.
Be very conservative about memory consumption and execution costs.
No leaks.
No zombies.
No slow blocking operations on the main thread.
Don't publish something until it's been well tested, and has been stable for some time. Bugs break clients' code, then they are less likely to reuse your library if it keeps breaking their program.
Study, use, and learn from good libraries.
Ask somebody (ideally, who's more experienced than you) to review your code.
Do use/exercise the libraries wherever appropriate in your projects.
Fix bugs before adding features.
Don't let that scare you -- it can be really fun, and you can learn a lot in the process.
There are a number of ways you can reuse code:
Store the code in a common directory and include that directory in your projects. Simple, but can have versioning issues.
Create a separate project which builds a static iOS library and then create a framework. More complex to setup because it involves scripting to build the framework directory structure. But easy to use in other projects and can handle versioning and device/simulator combined libs.
Create a separate project which builds a static iOS library and then include this as a subproject in other projects. Avoids having to build frameworks and the results can be more optimised.
That's the basic 3, there are of course a number of variations on these and how you go about them. A lot of what you decide to do is going to come down to who you are going to do this for. For example I like sub projects for my own code, but for code I want to make available for others, I think frameworks are better. even if they are more work to create. Plus I can then wrap them up with docsets of the api documentation and upload the whole lot as a DMG to github for others to download.

Is there any high-level, natively-compiled object-oriented language in wide use?

There are lots of oop languages, but I couldn't find any that has conveniences like garbage collection, but compiles natively to machine code. Sort of like between C and java/c#. One interesting language I found was Vala, but that's limited to the GNOME platform and is not that well-known
Go is probably closest.
But why on earth do you want it natively compiled anyway?
JIT compilation of portable bytecode has proved to be an extremely effective strategy. It compiles down to native code at runtime (so you get up to the performance of native code after the first few iterations) and it avoids the issues of having to build and manage platform-specific compiled binaries.
Are you thinking about C++? That is in high usage and can be compiled on nearly any (major) platform.
In the case you want to use an oo language that compiles down to native code you will "always" have to use header files and stuff as the elf format doesn't support oo (There is no class information in elf).In case you want to use classes from external libs you need to make the compiler aware somehow about the fact that there are classes, functions, etc. that are declared outside of your project. In C++ this is solved by the use of header files. So that's, I think, a major drawback in native object oriented languages. To resolve that issue a few tweaks would need to be made to elf/loader/linker in order to support the kind of features (like "linking" against "classes") you might expect. Even though mechanism for garbage collection could be implemented even in native languages. But that seems no good for os implementation.
There are C++ libs to do that for userspace apps like:
Boehm collector
Smart pointers

Are there open source Common Lisp COM wrappers?

I have an application that is written in SBCL and is deployed as an executable on Windows. The need has arisen for it to interact with Excel via COM and another application via DDE (I know, I know).
DDE is simple enough for me to have quickly wrapped what I needed in a very small, simple to maintain C library. COM, on the other hand, seems like a large enough project to just implement this portion of the functionality in Python with the Win32 extensions library.
This, to me, is annoying in that a lot of CL code is being augmented with some Python that is of varying degrees of integration with the main project.
I've seen that LispWorks and Allegro CL both allow for COM interaction but cannot find any open source implementations of the same functionality via google or CLiki.
Does such a thing exist?
There are bindings called cl-win32ole, implemented using CFFI.
You are asking for Excel integration, so the Excel example included in cl-win32ole might be of interest to you:
I'm not aware of open source COM wrappers that work on multiple CL implementations, SBCL including.
Your best bet might be checking out Corman Lisp which is Windows specific and includes a COM server. Check out its features page: http://www.cormanlisp.com/features.html
My impression is that Corman Lisp isn't actively supported any more but I could be very wrong on that, but at least you might glean something useful from its source code.