How can I divide a single table into multiple tables in access? - sql

Here is the problem: I am currently working with a Microsoft Access database that the previous employee created by just adding all the data into one table (yes, all the data into one table). There are about 186 columns in that one table.
I am now responsible for dividing each category of data into its own table. Everything is going fine although progress is too slow. Is there perhaps an SQL command that will somehow divide each category of data into its proper table? As of now I am manually looking at the main table and carefully transferring groups of data into each respective table along with its proper IDs making sure data is not corrupted. Here is the layout I have so far:
Note: I am probably one of the very few at my campus with database experience.

I would approach this as a classic normalisation process. Your single hugely wide table should contain all of the entities within your domain so as long as you understand the domain you should be able to normalise the structure until you're happy with it.
To create your foreign key lookups run distinct queries against the columns your going to remove and then add the key values back in.
It sounds like you know what you're doing already ? Are you just looking for reassurance that you're on the right track ? (Which it looks like you are).
Good luck though, and enjoy it - it sounds like a good little piece of work.

Related

one table with a lot of rows or a lot of tables with a view? on SQL Server

My question comes from what is more efficient when making queries and insert, since the number of registers(data) in my table will grow a lot.
I would like to know what is more efficient to do if all the data is placed within a single table or is the partition and through a View and trigger is more efficient to obtain and enter registers(data).
As already mentioned take a look at database normalization.
SQL is a way to work with relational databases and is built on the idea that we should have many tables that are linked with each other trough relationships. Thus I recommend multiple tables, because you will be able to reuse data (for example user name and surname) through specific IDs rather than copying that data each time a user performs some action on your platform and you need to insert or update some information.
Hope this helps!

Having all contact information in one table vs. using key-value tables

(NB. The question is not a duplicate for this, since I am dealing with an ORM system)
I have a table in my database to store all Contacts information. Some of the columns for each contact is fixed (e.g. Id, InsertDate and UpdateDate). In my program I would like to give user the option to add or remove properties for each contact.
Now there are of course two alternatives here:
First is to save it all in one table and add and remove entire columns when user needs to;
Create a key-value table to save each property alongside its type and connect the record to user's id.
These alternatives are both doable. But I am wondering which one is better in terms of speed? In the program it will be a very common thing for the user to view the entire Contact list to check for updates. Plus, I am using an ORM framework (Microsoft's Entity Framework) to deal with database queries. So if the user is to add and remove columns from a table all the time, it will be a difficult task to map them to my program. But again, if alternative (1) is a significantly better option than (2), then I can reconsider the key-value option.
I have actually done both of these.
Example #1
Large, wide table with columns of data holding names, phone, address and lots of small integer values of information that tracked details of the clients.
Example #2
Many different tables separating out all of the Character Varying data fields, the small integer values etc.
Example #1 was a lot faster to code for but in terms of performance, it got pretty slow once the table filled with records. 5000 wasn't a problem. When it reached 50,000 there was a noticeable performance degradation.
Example #2 was built later in my coding experience and was built to resolve the issues found in Example #1. While it took more to get the records I was after (LEFT JOIN this and UNION that) it was MUCH faster as you could ultimately pick and choose EXACTLY what the client was after without having to search a massive wide table full of data that was not all being requested.
I would recommend Example #2 to fit your #2 in the question.
And your USER specified columns for their data set could be stored in a table just to their own (depending on how many you have I suppose) which would allow you to draw on the table specific to that USER, which would also give you unlimited ability to remove and add columns to suit that particular setup.
You could then also have another table which kept track of the custom columns in the custom column table, which would give you the ability to "recover" columns later, as in "Do you want to add this to your current column choices or to one of these columns you have deleted in the past".

Dynamically creating tables as a means of partitioning: OK or bad practice?

Is it reasonable for an application to create database tables dynamically as a means of partitioning?
For example, say I have a large table "widgets" with a "userID" column identifying the owner of each row. If this table tended to grow extremely large, would it make sense to instead have the application create a new table called "widgets_{username}" for each new user? Assume that the application will only ever have to query for widgets belonging to a single user at a time (i.e. no need to try and join any of these user widget tables together).
Doing this would break up the one large table into more easily-managed chunks, but this doesn't seem like an elegant solution. In my mind, the database schema should be defined when the application is written, and any runtime data is stored as rows, not as additional tables.
As a more general question, is modifying the database schema at runtime ever ok?
Edit: This question is mostly hypothetical; I had a pretty good feeling that creating tables at runtime didn't make sense. That being said, we do have a table with millions of rows in our application. SELECTs perform fine, but things like deleting all rows owned by a particular user can take a while. Basically I'm looking for some solid reasoning why just dynamically creating a table for each user doesn't make sense for when I'm asked.
NO, NO, NO!! Now repeat after me, I will not do this because it will create many headaches and problems in the future! Databases are made to handle large amounts of information. they use indexes to quickly find what you are after. think phone book how effective is the index? would it be better to have a different book for each last name?
This will not give you anything performance wise. Keep a single table, but be sure to index on UserID and you'll be able to get the data fast. however if you split the table up, it becomes impossible/really really hard to get any info that spans multiple users, like search all users for a certain widget, count of all widgets of a certain type, etc. you need to have every query be built dynamically.
If deleting rows is slow, look into that. How many rows at one time are we talking about 10, 1000, 100000? What is your clustered index on this table? Could you use a "soft delete", where you have a status column that you UPDATE to "D" to mark the row as deleted. Can you delete the rows at a later time, with less database activity. is the delete slow because it is being blocked by other activity. look into those before you break up the table.
No, that would be a bad idea. However some DBMSs (e.g. Oracle) allow a single table to be partitioned on values of a column, which would achieve the objective without creating new tables at run time. Having said that, it is not "the norm" to partition tables like this: it is only usually done in very large databases.
Using an index on userID should result nearly in the same performance.
In my opinion, changing the database schema at runtime is bad practice.
Consider, for example, security issues...
Is it reasonable for an application to create database tables
dynamically as a means of partitioning?
No. (smile)

When to use recursive table

I have a need to build a schema structure to support table of contents (so the level of sections / sub-sections could change for each book or document I add)...one of my first thoughts was that I could use a recursive table to handle that. I want to make sure that my structure is normalized, so I was trying to stay away from deonormalising the table of contents data into a single table (then have to add columns when there are more sub-sections).
It doesn't seem right to build a recursive table and could be kind of ugly to populate.
Just wanted to get some thoughts on some alternate solutions or if a recursive table is ok.
Thanks,
S
It helps that SQL Server 2008 has both the recursive WITH clause and hierarchyid to make working with hierarchical data easier - I was pointing out to someone yesterday that MySQL doesn't have either, making things difficult...
The most important thing is to review your data - if you can normalize it to be within a single table, great. But don't shoehorn it in to fit a single table setup - if it needs more tables, then design it that way. The data & usage will show you the correct way to model things.
When in doubt, keep it simple. Where you've a collection of similar items, e.g. employees then a table that references itself makes sense. Whilst here you can argue (quite rightly) that each item within the table is a 'section' of some form or another, unless you're comfortable with modelling the data as sections and handling the different types of sections through relationships to these entities, I would avoid the complexity of a self-referencing table and stick with a normalized approach.

Table with a lot of columns

If my table has a huge number of columns (over 80) should I split it into several tables with a 1-to-1 relationship or just keep it as it is? Why? My main concern is performance.
PS - my table is already in 3rd normal form.
PS2 - I am using MS Sql Server 2008.
PS3 - I do not need to access all table data at once, but rather have 3 different categories of data within that table, which I access separately. It is something like: member preferences, member account, member profile.
80 columns really isn't that many...
I wouldn't worry about it from a performance standpoint. Having a single table (if you're typically using all of the data in your standard operations) will probably outperform multiple tables with 1-1 relationships, especially if you're indexing appropriately.
I would worry about this (potentially) from a maintenance standpoint, though. The more columns of data in a single table, the less understandable the role of that table in your grand scheme becomes. Also, if you're typically only using a small subset of the data, and all 80 columns are not always required, splitting into 2+ tables might help performance.
Re the performance question - it depends. The larger a row is, the less rows can be read from disk in one read. If you have a lot of rows, and you want to be able to read the core information from the table very quickly, then it may be worth splitting it into two tables - one with small rows with only the core info that can be read quickly, and an extra table containing all the info you rarely use that you can lookup when needed.
Taking another tack, from a maintenance & testing point of view, if as you say you have 3 distinct groups of data in the one table albeit all with the same unique id (e.g. member_id) it might make sense to split it out into separate tables.
If you need to add fields to say your profile details section of the members info table, do you really want to run the risk of having to re-test the preferences & account details elements of your app as well to ensure no knock on impacts.
Also for audit trail purposes if you want to track the last user ID/Timestamp to change a members data. If the admin app allows Preferences/Account Details/Profile Details to be updated separately then it makes sense to have them in separate tables to more easily track updates.
Not quite a SQL/Performance answer but maybe something to look at from a DB & App design pov
Depends what those columns are. If you've got hard coded duplicated fields like Colour1, Colour2, Colour3, then these are candidates for child tables. My general rule of thumb is if there's more than one field of the same type (Colour), then you might as well code for N of them, not a fixed number.
Rob.
1-1 may be easier, if you have say Member_Info; Member_Pref; Member_Profile. Having too many columns can make it run if you want lots of varchar(255) as you may go over the rowsize limit, and it just makes it too confusing.
Just make sure you have the correct forgein key constraints and suchwhat, so there's always 1 row in each table with the same member_id