Inserting "bigger" data into PostgreSQL makes the system faster? - sql

So, I witnessed the following behaviour while using PostgreSQL.
I have a table like this: (id INTEGER ..., msg VARCHAR(2000))
and then I run two programs A and B that do the exact same thing,
namely doing 20000 insertions and then 20000 retrievals (based on their id). The only
difference is that program A does insertions with messages containing
2000 characters while B just inserts messages containing at most 10 characters.
The thing is that the average time of all the insertions and retrievals
in A is always about ~15ms less than in B which doesn't really make sense,
since A is adding "bigger" data.
Any ideas or hints on why this could be happening? Could it be that when not using
all the characters of the msg the system uses the rest of the space for other purposes and therefore if msg is full the system is faster?
Based on #Dan Bracuk comment. I save the time on different events and realized that the following happens, in program A there quite a few times that insertions are really really fast while in program B this is never the case and that's why on average A is faster than B but I cannot explain this behaviour either.

I can't reproduce this without more detail about your setup and your programs, so the following is just an educated guess. It's conceivable that your observation is due to TOAST. Once a text field exceeds a certain size, it is stored in a physically separate table. Therefore, the main table is actually smaller than in the case where all the text values are stored inline, and so searches could be faster.

Related

is it ok to loop a sql query in programing language

I have a doubt in mind when retrieving data from database.
There are two tables and master table id always inserted to other table.
I know that data can retrieve from two table by joining but want to know,
if i first retrieve all my desire data from master table and then in loop (in programing language) join to other table and retrieve data, then which is efficient and why.
As far as efficiency goes the rule is you want to minimize the number of round trips to the database, because each trip adds a lot of time. (This may not be as big a deal if the database is on the same box as the application calling it. In the world I live in the database is never on the same box as the application.) Having your application loop means you make a trip to the database for every row in the master table, so the time your operation takes grows linearly with the number of master table rows.
Be aware that in dev or test environments you may be able to get away with inefficient queries if there isn't very much test data. In production you may see a lot more data than you tested with.
It is more efficient to work in the database, in fewer larger queries, but unless the site or program is going to be very busy, I doubt that it'll make much difference that the loop is inside the database or outside the database. If it is a website application then looping large loops outside the database and waiting on results will take a more significant amount of time.
What you're describing is sometimes called the N+1 problem. The 1 is your first query against the master table, the N is the number of queries against your detail table.
This is almost always a big mistake for performance.*
The problem is typically associated with using an ORM. The ORM queries your database entities as though they are objects, the mistake is assume that instantiating data objects is no more costly than creating an object. But of course you can write code that does the same thing yourself, without using an ORM.
The hidden cost is that you now have code that automatically runs N queries, and N is determined by the number of matching rows in your master table. What happens when 10,000 rows match your master query? You won't get any warning before your database is expected to execute those queries at runtime.
And it may be unnecessary. What if the master query matches 10,000 rows, but you really only wanted the 27 rows for which there are detail rows (in other words an INNER JOIN).
Some people are concerned with the number of queries because of network overhead. I'm not as concerned about that. You should not have a slow network between your app and your database. If you do, then you have a bigger problem than the N+1 problem.
I'm more concerned about the overhead of running thousands of queries per second when you don't have to. The overhead is in memory and all the code needed to parse and create an SQL statement in the server process.
Just Google for "sql n+1 problem" and you'll lots of people discussing how bad this is, and how to detect it in your code, and how to solve it (spoiler: do a JOIN).
* Of course every rule has exceptions, so to answer this for your application, you'll have to do load-testing with some representative sample of data and traffic.

What's the curve for a simple select query?

This is a conceptual question.
Hypothetically, when do select * from table_name where the table has 1 million records it takes about 3 secs.
Similarly, when I select 10 million records the time taken is about 30 secs. But I am told the selection of records is not linearly proportional to time. After a certain number, the time required to select records increases exponentially?
Please help me understand how this works?
THere are things that can make one query take longer than the other even simple selects with no where clauses or joins.
First, the time to return the query depends on how busy the network is at the time the query is run. It could also depend on whether there are any locks on the data or how much memory is available.
It also depends on how wide the tables are and in general how many bytes an individual record would have. For instance I would expect that a 10 million record table that only has two columns both ints would return much faster than a million record table that has 50 columns including some large columns epecially if they are things like documents stored as database objects or large fields that have too much text to fit into an ordinary varchar or nvarchar field (in sql server these would be nvarchar(max) or text for instance). I would expect this becasue there is simply less total data to return even though more records.
As you start adding where clauses and joins of course there are many more things that affect performance of an indivuidual query. If you query datbases, you should read a good book on performance tuning for your particular database. There are many things you can do without realizing it that can cause queries to run more slowly than need be. You should learn the techniques that create the queries most likely to be performant.
I think this is different for each database-server. Try to monitor the performance while you fire your queries (what happens to the memory, and CPU?)
Eventually all hardware components have a bottleneck. If you come close to that point the server might 'suffocate'.

View Clustered Index Seek over 0.5 million rows takes 7 minutes

Take a look at this execution plan: http://sdrv.ms/1agLg7K
It’s not estimated, it’s actual. From an actual execution that took roughly 30 minutes.
Select the second statement (takes 47.8% of the total execution time – roughly 15 minutes).
Look at the top operation in that statement – View Clustered Index Seek over _Security_Tuple4.
The operation costs 51.2% of the statement – roughly 7 minutes.
The view contains about 0.5M rows (for reference, log2(0.5M) ~= 19 – a mere 19 steps given the index tree node size is two, which in reality is probably higher).
The result of that operator is zero rows (doesn’t match the estimate, but never mind that for now).
Actual executions – zero.
So the question is: how the bleep could that take seven minutes?! (and of course, how do I fix it?)
EDIT: Some clarification on what I'm asking here.
I am not interested in general performance-related advice, such as "look at indexes", "look at sizes", "parameter sniffing", "different execution plans for different data", etc.
I know all that already, I can do all that kind of analysis myself.
What I really need is to know what could cause that one particular clustered index seek to be so slow, and then what could I do to speed it up.
Not the whole query.
Not any part of the query.
Just that one particular index seek.
END EDIT
Also note how the second and third most expensive operations are seeks over _Security_Tuple3 and _Security_Tuple2 respectively, and they only take 7.5% and 3.7% of time. Meanwhile, _Security_Tuple3 contains roughly 2.8M rows, which is six times that of _Security_Tuple4.
Also, some background:
This is the only database from this project that misbehaves.
There are a couple dozen other databases of the same schema, none of them exhibit this problem.
The first time this problem was discovered, it turned out that the indexes were 99% fragmented.
Rebuilding the indexes did speed it up, but not significantly: the whole query took 45 minutes before rebuild and 30 minutes after.
While playing with the database, I have noticed that simple queries like “select count(*) from _Security_Tuple4” take several minutes. WTF?!
However, they only took several minutes on the first run, and after that they were instant.
The problem is not connected to the particular server, neither to the particular SQL Server instance: if I back up the database and then restore it on another computer, the behavior remains the same.
First I'd like to point out a little misconception here: although the delete statement is said to take nearly 48% of the entire execution, this does not have to mean it takes 48% of the time needed; in fact, the 51% assigned inside that part of the query plan most definitely should NOT be interpreted as taking 'half of the time' of the entire operation!
Anyway, going by your remark that it takes a couple of minutes to do a COUNT(*) of the table 'the first time' I'm inclined to say that you have an IO issue related to said table/view. Personally I don't like materialized views very much so I have no real experience with them and how they behave internally but normally I would suggest that fragmentation is causing its toll on the underlying storage system. The reason it works fast the second time is because it's much faster to access the pages from the cache than it was when fetching them from disk, especially when they are all over the place. (Are there any (max) fields in the view ?)
Anyway, to find out what is taking so long I'd suggest you rather take this code out of the trigger it's currently in, 'fake' an inserted and deleted table and then try running the queries again adding times-stamps and/or using some program like SQL Sentry Plan Explorer to see how long each part REALLY takes (it has a duration column when you run a script from within the program).
It might well be that you're looking at the wrong part; experience shows that cost and actual execution times are not always as related as we'd like to think.
Observations include:
Is this the biggest of these databases that you are working with? If so, size matters to the optimizer. It will make quite a different plan for large datasets versus smaller data sets.
The estimated rows and the actual rows are quite divergent. This is most apparent on the fourth query. "delete c from #alternativeRoutes...." where the _Security_Tuple5 estimates returning 16 rows, but actually used 235,904 rows. For that many rows an Index Scan could be more performant than Index Seeks. Are the statistics on the table up to date or do they need to be updated?
The "select count(*) from _Security_Tuple4" takes several minutes, the first time. The second time is instant. This is because the data is all now cached in memory (until it ages out) and the second query is fast.
Because the problem moves with the database then the statistics, any missing indexes, et cetera are in the database. I would also suggest checking that the indexes match with other databases using the same schema.
This is not a full analysis, but it gives you some things to look at.
Fyodor,
First:
The problem is not connected to the particular server, neither to the particular SQL Server instance: if I back up the database and then restore it on another computer, the behavior remains the same.
I presume that you: a) run this query in isolated environment, b) the data is not under mutation.
Is this correct?
Second: post here your CREATE INDEX script. Do you have a funny FILLFACTOR? SORT_IN_TEMPDB?
Third: which type is your ParentId, ObjectId? int, smallint, uniqueidentifier, varchar?

Convert multiple rows into single column

I have a database table, UserRewards that has 30+ million rows. In this row, there is a userID, and a rewardID per row (along with other fields).
There is a users table (has around 4 million unique users), that has the primary key userID, and other fields.
For performance reasons, I want to move the rewardID per user in userrewards into a concatenated field in users. (new nvarchar(4000) field called Rewards)
I need a script that can do this a fast as possible.
I have a cursor which joins up the rewards using the script below, but it only processes around 100 users per minute, which would take far too long to get though the around 4 million unique users I have.
set #rewards = ( select REPLACE( (SELECT rewardsId AS [data()] from userrewards
where UsersID = #users_Id and BatchId = #batchId
FOR XML PATH('') ), ' ', ',') )
Any suggestions to optimise this? I am about to try a while loop so see how that works, but any other ideas would be greatly received.
EDIT:
My site does the following:
We have around 4 million users who have been pre assigned 5-10 "awards". This relationship is in the userrewards table.
A user comes to the site, we identify them, and lookup in the database the rewards assigned to them.
Issue is, the site is very popular, so I am having a large number of people hitting the site at the same time requesting their data. The above will reduce my joins, but I understand this may not be the best solution. My database server goes upto 100% CPU usage within 10 seconds of me turing the site on, so most people's requests timeout (they are shown an error page), or they get results, but not in a satisfactory time.
Is anyone able to suggest a better solution to my issue?
There are several reasons why I think the approach you are attempting is a bad idea. First, how are you going to maintain the comma delimited list in the users table? It is possible that the rewards are loaded in batch, say at night, so this isn't really a problem now. Even so, one day you might want to assign the rewards more frequently.
Second, what happens when you want to delete a reward or change the name of one of them? Instead of updating one table, you need to update the information in two different places.
If you have 4 million users, with thousands of concurrent accesses, then small inconsistencies due to timing will be noticeable and may generate user complaints. A call from the CEO on why complaints are increasing is probably not something you want to deal with.
An alternative is to build an index on UserRewards(UserId, BatchId, RewardsId). Presumably, each field is few bytes, so 30 million records should easily fit into 8 Gbytes of memory (be sure that SQL Server is allocated almost all the memory!). The query that you want can be satisfied strictly by this index, without having to bring the UserRewards table into memory. So, only the index needs to be cached. And, it will be optimized for this query.
One thing that might be slowing everything down is the frequency of assigning rewards. If these are being assigned at even 10% of the read rate, you could have the inserts/updates blocking the reads. You want to do the queries with READ_NOLOCK, to avoid this problem. You also want to be sure that locking is occurring at the record or page level, to avoid conflicts with the reads.
Maybe too late, but using uniqueidentifiers as keys will not only quadruple your storage space (compared to using ints as keys), but slow your queries by orders of magnitude. AVOID!!!

Running Updates on a large, heavily used table

I have a large table (~170 million rows, 2 nvarchar and 7 int columns) in SQL Server 2005 that is constantly being inserted into. Everything works ok with it from a performance perspective, but every once in a while I have to update a set of rows in the table which causes problems. It works fine if I update a small set of data, but if I have to update a set of 40,000 records or so it takes around 3 minutes and blocks on the table which causes problems since the inserts start failing.
If I just run a select to get back the data that needs to be updated I get back the 40k records in about 2 seconds. It's just the updates that take forever. This is reflected in the execution plan for the update where the clustered index update takes up 90% of the cost and the index seek and top operator to get the rows take up 10% of the cost. The column I'm updating is not part of any index key, so it's not like it reorganizing anything.
Does anyone have any ideas on how this could be sped up? My thought now is to write a service that will just see when these updates have to happen, pull back the records that have to be updated, and then loop through and update them one by one. This will satisfy my business needs but it's another module to maintain and I would love if I could fix this from just a DBA side of things.
Thanks for any thoughts!
Actually it might reorganise pages if you update the nvarchar columns.
Depending on what the update does to these columns they might cause the record to grow bigger than the space reserved for it before the update.
(See explanation now nvarchar is stored at http://www.databasejournal.com/features/mssql/physical-database-design-consideration.html.)
So say a record has a string of 20 characters saved in the nvarchar - this takes 20*2+2(2 for the pointer) bytes in space. This is written at the initial insert into your table (based on the index structure). SQL Server will only use as much space as your nvarchar really takes.
Now comes the update and inserts a string of 40 characters. And oops, the space for the record within your leaf structure of your index is suddenly too small. So off goes the record to a different physical place with a pointer in the old place pointing to the actual place of the updated record.
This then causes your index to go stale and because the whole physical structure requires changing you see a lot of index work going on behind the scenes. Very likely causing an exclusive table lock escalation.
Not sure how best to deal with this. Personally if possible I take an exclusive table lock, drop the index, do the updates, reindex. Because your updates sometimes cause the index to go stale this might be the fastest option. However this requires a maintenance window.
You should batch up your update into several updates (say 10000 at a time, TEST!) rather than one large one of 40k rows.
This way you will avoid a table lock, SQL Server will only take out 5000 locks (page or row) before esclating to a table lock and even this is not very predictable (memory pressure etc). Smaller updates made in this fasion will at least avoid concurrency issues you are experiencing.
You can batch the updates using a service or firehose cursor.
Read this for more info:
http://msdn.microsoft.com/en-us/library/ms184286.aspx
Hope this helps
Robert
The mos brute-force (and simplest) way is to have a basic service, as you mentioned. That has the advantage of being able to scale with the load on the server and/or the data load.
For example, if you have a set of updates that must happen ASAP, then you could turn up the batch size. Conversely, for less important updates, you could have the update "server" slow down if each update is taking "too long" to relieve some of the pressure on the DB.
This sort of "heartbeat" process is rather common in systems and can be very powerful in the right situations.
Its wired that your analyzer is saying it take time to update the clustered Index . Did the size of the data change when you update ? Seems like the varchar is driving the data to be re-organized which might need updates to index pointers(As KMB as already pointed out) . In that case you might want to increase the % free sizes on the data and the index pages so that the data and the index pages can grow without relinking/reallocation . Since update is an IO intensive operation ( unlike read , which can be buffered ) the performance also depends on several factors
1) Are your tables partitioned by data 2) Does the entire table lies in the same SAN disk ( Or is the SAN striped well ?) 3) How verbose is the transaction logging . Can the buffer size of the transaction loggin increased to support larger writes to the log to suport massive inserts ?
Its also important which API/Language are you using? e.g JDBC support a batch update feature which makes the updates a little bit efficient if you are doing multiple updates .