I have used grid.py in LIBSVM and found the best parameter for my dataset
C -8.0 g -0.0625 CV- 63.82
Then I tried svm-train but I don't understand the syntax of the svm-train command
svm-train [options] training_set_file [model_file]
A model_File is need but grid.py only gave me a .out file. When I used this, it showed an error.
My question is:
Could you explain what the model file is, preferably using an example?
I am using LIBSVM on Debian (using the command-line).
You want command-lines like:
svm-train -C 8.0 -g 0.0625 training.data svm.model
svm-predict testing.data svm.model predict.out
The model file (svm.model) is just a place to store the model parameters learned by svm-train so that they can be later used for prediction. The model is created by svm-train, it is not produced by grid.py, and it is input to svm-predict. Therefore you can make any name you like to give to svm--train, so long as you give the same name to svm-predict. I often call the file something like model-C8.0-g0.0625 so I can later tell what it is.
A model file will look like this:
svm_type c_svc
kernel_type rbf
gamma 0.5
nr_class 2
total_sv 6164
rho -2.4768
label 1 -1
nr_sv 3098 3066
SV
2 1:-0.452773 2:-0.455573 3:-0.485312 4:-0.436805 ...
If you need to know more about the model file, see the LIBSVM FAQ
Related
I was using Google Colab to train Yolo-v3 to detect custom objects. I'm new to Colab, and darknet.
I used the following command for training:
!./darknet detector train "/content/gdrive/My Drive/darknet/obj.data" "/content/gdrive/My Drive/darknet/cfg/yolov3-PID.cfg" "/content/gdrive/My Drive/darknet/backup/yolov3-PID_final.weights" -dont_show
The training finished as follows, and it didn't display any details of the epochs (I don't know how many epochs actually run). Actually, it took very short time until it displayed Done!, and saved the weights as shown in the above image
Then, I tried to detect a test image with the following command:
!./darknet detect "/content/gdrive/My Drive/darknet/cfg/yolov3-PID.cfg" "/content/gdrive/My Drive/darknet/backup/yolov3-PID_final.weights" "/content/gdrive/My Drive/darknet/img/MN 111-0-515 (45).jpg" -dont-show
However, I got the following error:
Error: in the file data/coco.names number of names 80 that isn't equal to classes=13 in the file /content/gdrive/My Drive/darknet/cfg/yolov3-PID.cfg
Even, the resulting image didn't contain any bounding boxes, so I don't know if the training worked or not.
Could you pls advise what might be wrong with the training, and why the error is referring to coco.names, while I'm using other files for names, and configuration?
You did not share the yolov3-PID.cfg, obj.data and coco.names. I am assuming coco.names contain 80 classes as in the repo.
The error likely is in obj.data, where it seems your goal here is to detect 13 custom objects. If this is the case, then set classes=13, also replace names=data/coco.names with names=data/obj.names. Here, obj.names file should contain 13 lines for the custom class names. Also modify yolov3-PID.cfg to contain same amount of classes.
I suggest using this repo below if you are not already using this. It contains google colab training and inference script for yolov3, yolov4.
Here are the instructions for custom object detection training.
Nice work!!! coming this far. Well, everything is fine, you just need to edit the data folder of the darknet. By default it's using coco label, go to darknet folder --> find data folder --> coco.names file --> edit the file by removing 80 classes(in colab just double click to edit and ctrl+s to save) --> Put down your desired class and it's done!!!
i was having the same problem when i was training custom model in colab.
i just cloned darknet again in another folder and edited coco.name and moved it to my training folder. and it worked!!
I am trying to use spacy's 'pre-train' feature for a NER task, so here is what I tried doing(I am still trying to use it),
Step 1: I started by initializing the model with 'en_core_web_lg' next I saved this model to disk and tested its NER capability on few lines to see if it recognizes the tags in those test lines. (Made a note of ignored tags)
Step 2: Next I created a .jsonl file with new data to train on (about 20 new lines, I wanted to see the model's capability given new data around an entity(ignored tags found earlier) will it be able to correctly identify tags after doing transfer learning). So using this .jsonl and the model I saved earlier file I used 'spacy pre-train' command to train, this created a token2vec .bin file for me (model999.bin).
Step 3: Next I created a function that takes the location of an earlier saved model(model saved in step 1) and location of token2vec (model999.bin file obtained in step 2). Inside the function it loads the model>creates/gets pipe>disables rest of the files>uses (pipe_name).model.tok2vec.from_bytes(file_.read()) to read from model999.bin and broadcast the learned vectors to base model.
But when I run this function, I get this error:
ValueError: could not broadcast input array from shape (96,3,384) into shape (96,3,480)
(I have uploaded the entire notebook here: [https://github.com/pratikdk/ner_test/blob/master/base_model_contextual_TF.ipynb ]).
In order to pre-train I used this function
python -m spacy pre-train ub.jsonl model_saves w2s
Here are the 20 lines I tried training on top of the base model
[ https://github.com/pratikdk/ner_test/blob/master/ub.jsonl ]
What am I doing wrong here exactly? Please can you also point the fix, I am sure many would need insight on this.
Environment
Operating System: CentOS
Python Version Used: 3.7.3
spaCy Version Used: 2.1.3
Environment Information: Anaconda Jupyter Lab
So I was able to fix this, the developer(on github) answered my question.
Here is the answer:
https://github.com/explosion/spaCy/issues/3616
I want to reload some of my model variables with the saved weight in the chheckpoint and then export it to the tflite file.
The question is a bit tricky without see code, so I made this Colab jupyter notebook with the complete code to explain it better (All code is working, you can actually copy in a new collab and change if you want):
https://colab.research.google.com/drive/1wSor4CxEz36LgElVi4y_N8uiSt4-j9b2#scrollTo=XKBQzoW_wd4A
I got it working but with two issues:
The exported .tflite file is like 3Ks, so I do not believe it is the entire model with the weights in it. Only the input is an image of 128x128x3, one weight for each is more than 3K.
When I finally import the model in Android, I have this error: "Didn't find custom op for name 'VariableV2' /n Didn't find custom op for name 'ReorderAxes' /n Registration failed."
Maybe the last error is cause the save/restore operations? They look like are there when I save the graph definition.
Thanks in advance.
I realize my problem.. I'm trying to convert to TFLITE a model without previously freezing it, TFLITE do not allow "VariableV2" nodes cause they should not be there..
All the problem is corrected freezing the model like this:
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), ["output"])
I lost some time looking for that, hope it helps.
I'm using tensorboard (tensorflow 1.1.0) to show the result of my CNN classifier.
I added some output vector as tf.summary.histogram in order to show the counts of output in each bin, but tensorboard seems to automatically compute interpolation and show them as (somehow) smoothed distribution
(and therefore I can not find the exact counts for the bins).
Could someone tell me how can I avoid the interpolation and show usual histograms using bars?
I not sure that there is easy way to do it.
I very unsure in below text, correct me if I wrong.
From this file https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/vz_histogram_timeseries/index.html it seems that histogram comes to tensorboard in double values.
Summary op uses either histogram from https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/ops/histogram_ops.py (1) or https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/core/lib/histogram/histogram.cc (2)
I suppose that it uses 2nd because here https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/summary/summary.py#L189 it calls function from generated file. In my package code in this generated file there is another function call:
result = _op_def_lib.apply_op("HistogramSummary", tag=tag, values=values,
name=name)
I have grep all repo and seems like there is no other python code which define something with "HistogramSummary", so it seems like it's really defined here https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/core/kernels/summary_op.cc and this code uses code mentioned above (2).
So, it seems to me that histogram which is used now is buried deep inside of framework and I not sure that it's easy to rewrite it.
In this page there is email for support https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/summary . I suppose that it's better to contact this person or make issue on github.
Running the model out of the box generates these files in the data dir :
ls
dev-v2.tgz newstest2013.en
giga-fren.release2.fixed.en newstest2013.en.ids40000
giga-fren.release2.fixed.en.gz newstest2013.fr
giga-fren.release2.fixed.en.ids40000 newstest2013.fr.ids40000
giga-fren.release2.fixed.fr training-giga-fren.tar
giga-fren.release2.fixed.fr.gz vocab40000.from
giga-fren.release2.fixed.fr.ids40000 vocab40000.to
Reading the src of translate.py :
https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/translate.py
tf.app.flags.DEFINE_string("from_train_data", None, "Training data.")
tf.app.flags.DEFINE_string("to_train_data", None, "Training data.")
To utilize my own training data I created dirs my-from-train-data & to-from-train-data and add my own training data to each of these dirs, training data is contained in the files mydata.from & mydata.to
my-to-train-data contains mydata.from
my-from-train-data contains mydata.to
I could not find documentation as to using own training data or what format it should take so I inferred this from the translate.py src and contents of data dir created when executing translate model out of the box.
Contents of mydata.from :
Is this a question
Contents of mydata.to :
Yes!
I then attempt to train the model using :
python translate.py --from_train_data my-from-train-data --to_train_data my-to-train-data
This returns with an error :
tensorflow.python.framework.errors_impl.NotFoundError: my-from-train-data.ids40000
Appears I need to create file my-from-train-data.ids40000 , what should it's contents be ? Is there an example of how to train this model using custom data ?
blue-sky
Great question, training a model on your own data is way more fun than using the standard data. An example of what you could put in the terminal is:
python translate.py --from_train_data mydatadir/to_translate.in --to_train_data mydatadir/to_translate.out --from_dev_data mydatadir/test_to_translate.in --to_dev_data mydatadir/test_to_translate.out --train_dir train_dir_model --data_dir mydatadir
What goes wrong in your example is that you are not pointing to a file, but to a folder. from_train_data should always point to a plaintext file, whose rows should be aligned with those in the to_train_data file.
Also: as soon as you run this script with sensible data (more than one line ;) ), translate.py will generate your ids (40.000 if from_vocab_size and to_vocab_size are not set). Important to know is that this file is created in the folder specified by data_dir... if you do not specify one this means they are generated in /tmp (I prefer them at the same place as my data).
Hope this helps!
Quick answer to :
Appears I need to create file my-from-train-data.ids40000 , what should it's contents be ? Is there an example of how to train this model using custom data ?
Yes, that's the vocab/ word-id file missing, which is generated when preparing to create the data.
Here is a tutorial from the Tesnorflow documentation.
quick over-view of the files and why you might be confused by the files outputted vs what to use:
python/ops/seq2seq.py: >> Library for building sequence-to-sequence models.
models/rnn/translate/seq2seq_model.py: >> Neural translation sequence-to-sequence model.
models/rnn/translate/data_utils.py: >> Helper functions for preparing translation data.
models/rnn/translate/translate.py: >> Binary that trains and runs the translation model.
The Tensorflow translate.py file requires several files to be generated when using your own corpus to translate.
It needs to be aligned, meaning: language line 1 in file 1. <> language line 1 file 2. This
allows the model to do encoding and decoding.
You want to make sure the Vocabulary have been generated from the dataset using this file:
Check these steps:
python translate.py
--data_dir [your_data_directory] --train_dir [checkpoints_directory]
--en_vocab_size=40000 --fr_vocab_size=40000
Note! If the Vocab-size is lower, then change that value.
There is a longer discussion here tensorflow/issues/600
If all else fails, check out this ByteNet implementation in Tensorflow which does translation task as well.