When I wrote some general programming utility code, I found that it's good to have both inplace mutator and new object creator member function for one functionality.
For example, some class which represents path in file system may have "normalize" functionality. Path object may mutates itself into normalized one, or returns new normalized path object.
class path {
...
void normalize_itself()
path get_new_normalized_path()
...
}
I've tried some convention for this one, but most of them are not satisfiable.
'normalize!' for inplace function like ruby - good, but most other languages don't support special character to be included in identifier.
'normalize_ip' for inplace function - since most of my function usages are inplace, I think it's too ugly.
'get_normalized' for non-inplace function - acceptable, but can be confused with other simple getter function for member.
'normalized' for non-inplace function - sometime not uniform, and easily confused with its inplace counter part.
write non-inplace function as free function - lack of intellisense assistance of IDE, sometime visibility issues.
I'd like to find some good/practical convention to distinguish two function.
I think normalize for your mutator and grab_normalized for your object creator would work.
Related
I want to build a class in Raku. Here's what I have so far:
unit class Vimwiki::File;
has Str:D $.path is required where *.IO.e;
method size {
return $.file.IO.s;
}
I'd like to get rid of the size method by simply making my class inherit the methods from IO::Path but I'm at a bit of a loss for how to accomplish this. Trying is IO::Path throws errors when I try to create a new object:
$vwf = Vimwiki::File.new(path => 't/test_file.md');
Must specify a non-empty string as a path
in block <unit> at t/01-basic.rakutest line 24
Must specify a non-empty string as a path
I always try a person's code when looking at someone's SO. Yours didn't work. (No declaration of $vwf.) That instantly alerts me that someone hasn't applied Minimal Reproducible Example principles.
So I did and less than 60 seconds later:
IO::Path.new
Yields the same error.
Why?
The doc for IO::Path.new shows its signature:
multi method new(Str:D $path, ...
So, IO::Path's new method expects a positional argument that's a Str. You (and my MRE) haven't passed a positional argument that's a Str. Thus the error message.
Of course, you've declared your own attribute $path, and have passed a named argument to set it, and that's unfortunately confused you because of the coincidence with the name path, but that's the fun of programming.
What next, take #1
Having a path attribute that duplicates IO::Path's strikes me as likely to lead to unnecessary complexity and/or bugs. So I think I'd nix that.
If all you're trying to do is wrap an additional check around the filename, then you could just write:
unit class Vimwiki::File is IO::Path;
method new ($path, |) { $path.IO.e ?? (callsame) !! die 'nope' }
callsame redispatches the ongoing routine call (the new method call), with the exact same arguments, to the next best fitting candidate(s) that would have been chosen if your new one containing the callsame hadn't been called. In this case, the next candidate(s) will be the existing new method(s) of IO::Path.
That seems fine to get started. Then you can add other attributes and methods as you see fit...
What next, take #2
...except for the IO::Path bug you filed, which means you can't initialize attributes in the normal way because IO::Path breaks the standard object construction protocol! :(
Liz shows one way to workaround this bug.
In an earlier version of this answer, I had not only showed but recommended another approach, namely delegation via handles instead of ordinary inheritance. I have since concluded that that was over-complicating things, and so removed it from this answer. And then I read your issue!
So I guess the delegation approach might still be appropriate as a workaround for a bug. So if later readers want to see it in action, follow #sdondley's link to their code. But I'm leaving it out of this (hopefully final! famous last words...) version of this answer in the hope that by the time you (later reader) read this, you just need to do something really simple like take #1.
I implement several global functions in our library that look something like this:
void init_time();
void init_random();
void init_shapes();
I would like to add functions to provide a check whether those have been called:
bool is_time_initialized();
bool is_random_initialized();
bool are_shapes_initialized();
However, as you can see are_shapes_initialized falls out of the row due to the fact that shapes is plural and therefore the function name must start with are and not is. This could be a problem, as the library is rather large and not having a uniform way to group similiar functions under the same naming convention might be confusing / upsetting.
E.g. a user using IntelliSense quickly looking up function names to see if the libary offers a way to check if their initialization call happened:
They won't find are_shapes_initialized() here unless scrolling through hundreds of additional function / class names.
Just going with is_shapes_initialized() could offer clarity:
As this displays all functions, now.
But how can using wrong grammar be a good approach? Shouldn't I just assume that the user should also ask IntelliSense for "are_initialized" or just look into the documentation in the first place? Probably not, right? Should I just give up on grammatical correctness?
The way I see it, a variable is a single entity. Maybe that entity is an aggregate of other entities, such as an array or a collection, in which case it would make sense to give it a plural name e.g. a set of Shape objects could be called shapes. Even so, it is still a single object. Looking at it that way, it is grammatically acceptable to refer to it as singular. After all, is_shapes_initialized actually means "Is the variable 'shapes' initialized?"
It's the same reason we say "The Bahamas is" or "The Netherlands is", because we are referring to the singular country, not whatever plural entity it is comprised of. So yes, is_shapes_initialized can be considered grammatically correct.
It's more a matter of personal taste. I would recommend putting "is" before functions that return Boolean. This would look more like:
bool is_time_initialized();
bool is_random_initialized();
bool is_shapes_initialized();
This makes them easier to find and search for, even if they aren't grammatically correct.
You can find functions using "are" to show it is plural in places such as the DuckDuckGo app, with:
areItemsTheSame(...)
areContentsTheSame(...)
In the DuckDuckGo app, it also uses "is" to show functions return boolean, and boolean variables:
val isFullScreen: Boolean = false
isAssignableFrom(...)
In OpenTK, a C# Graphics Library, I also found usage of "are":
AreTexturesResident(...)
AreProgramsResident(...)
In the same OpenTK Libary, they use "is" singularly for functions that return boolean and boolean variables:
IsEnabledGenlock(...)
bool isControl = false;
Either usage could work. Using "are" plurally would make more sense grammatically, and using "if" plurally could make more sense for efficiency or simplifying Boolean functions.
Here's what I would do, assuming you are trying to avoid calling this function on each shape.
void init_each_shape();
bool is_each_shape_initialized();
Also assuming that you need these functions, it seems like it would make more sense to have the functions throw an exception if they do not succeed.
I have a project where we have a mix of different naming when a function needs to find an object using a property given in parameter. I am wondering if there is a naming convention for the following:
function getObjectUsingName(name){} // A
function getObjectByName(name){} // B
function getObjectWithName(name){} // C
More basically, it there a different meaning between them or it is only a matter of choosing one?
I would say it is only matters for easy to read the code. And usually people choose "by". So function getObjectByName(name){} would be the nicest way but it is only based on my experience.
Now I have an import(a) function, that in short words dofile's header in .framework like this:
import("<Kakao/KARect>") => dofile("/System/Library/Frameworks/Kakao.framework/Headers/KARect.lua")
And in KARect.lua for example I have:
KARect = {}
function KARect:new(_x, _y, _width, _height, _colorBack)
local new = setmetatable({}, {__index = self})
new.id = KAEntities:generateID()
...
return new
end
function KARect:draw()
...
end
After some time I thought about reworking this system and making "headers" work like typical Lua modules with advanced require() so function will do e.g.:
import("<Kakao/KARect>") => package.path = "/System/Library/Frameworks/Kakao.framework/Headers/?.lua"; KARect = require("KARect")
and file will contain:
local KARect = {}
...
return KARect
Because headers should not contain anything but only classes with their names? I'm getting confused when thinking about it, as I never used Obj C :s
I never used Obj C
Then why are you trying to implement its headers in a language, that does not use headers at all?
Header! What is a header?
Header files in C-like languages store more than just a name. They store constants and macro commands, function and class method argument and return types, structure and class fields. In essence, the contents of the header file are forward declarations. They came into existence due to the need to perform the same forward-declarations across many files.
I don't know what additional rules and functions were added to header files in Obj-C, but you can get general understanding of what they do in the following links: 1, 2, 3, 4 with the last one being the most spot-on.
Answer to the question present
Lua is dynamically-typed interpreted language. It does not do compile time type checks and, typically, Lua programs can and should be structured in a way that does not need forward declarations across files. So there is no meaningful way for a programmer to create and for lua bytecode generator and interpreter to use header files.
Lua does not have classes at all. The code you've posted is a syntactic sugar for an assignment of a function with a slightly different signature to a table which imitates class:
KARect.new = function( first_arg_is_self, _x, _y, _width, _height, _colorBack)
local new = setmetatable({}, {__index = first_arg_is_self})
return new
end
There is no declarations here, only generation of an anonymous function and its assignment to a field in a table. Other parts of program do not need to know anything about a particular field, variable or function (which is stored in variable) in advance (unlike C).
So, no declaration means nothing to separate from implementation. You of course can first list fields of the class-table and do dummy assignments to them, but, again, Lua will have no use for those. If you want to give hints to humans, it is probably better to write a dedicated manual or put comments in the implementation.
Lua has situations where forward declarations are needed to reference local functions. But this situation does not arise in object oriented code, as all methods are accessed through reference to the object, and by the time first object is created, the class itself is usually fully constructed.
I have a function that decorates a string. If the decorated string is again fed to the function, it is guaranteed not to change. How is the standard naming convention for such a function? I'll probably create a namespace because I need to have a few of those functions.
I've come up with:
repetition_safe.decorate(me);
fixpoint_gen.decorate(me);
one_time_effect.decorate(me);
but I don't really like any of these.
How would you name the namespace or function?
How about:
StringDecorator.MakeImmutable(input);
I think "MakeImmutable" is better than "Decorate" as the later is ambiguous i.e. a user reading the code won't know what "decorate" does, whereas "makeImmutable" will inform the user that this function will make the input string immutable/non-changable.