TL;DR: How can I get a subrange of a violinplot whilst keeping accurate quartile lines?
I am using seaborn violinplots to make static charts for a report, but as far as I can tell, there's no way to redraw a particular area between limits whilst retaining the 25/median/75 quartile lines of the original dataset.
Here's my example dataset as a violin. The 25/median/75 values are left side: 1.0/5.0/9.0; right side: 2.0/5.0/9.0
My data has such a long tail that all the useful info is scrunched up into a tiny area. I want to ignore (but not throw away) the tail and show a closer look at the interesting bit.
I tried to reset the ylim using ax.set(ylim=(0, upp)), but the resultant graph is not great: it's jaggy and the inner lines don't meet the violin edge.
Is there a way to reset the y-axis limits but get a better quality result?
Next I tried to cut off the tail by dropping values from the dataset. I dropped anything over the 97th centile. The violin looks way better, but the quartile lines have been recalculated for this new dataset. They're showing a median of about 4, not 5 as per the original dataset.
I'm using inner="quartile", so the code that gets called in Seaborn is _ViolinPlotter::draw_quartiles
def draw_quartiles(self, ax, data, support, density, center, split=False):
"""Draw the quartiles as lines at width of density."""
q25, q50, q75 = np.percentile(data, [25, 50, 75])
self.draw_to_density(ax, center, q25, support, density, split,
linewidth=self.linewidth,
dashes=[self.linewidth * 1.5] * 2)
As you can see, it assumes (understandably) that one wants to draw the quartile lines at percentiles 25, 50 and 75. It'd be amazeballs if there was a way I could call draw_to_density with my own values (is there?).
At the moment, I am attempting to manually adjust the position of the lines. It's trivial to figure out & set the y-values:
for l in ax.lines:
l.set_ydata(<get correct quartile value from original dataset>)
but I'm finding it hard to figure out the limits for x, i.e. the density of the distribution at the quartiles. It seems to involve gaussian kde, and tbh it's getting hacky and inelegant at this point. Is there an easy way to calculate how long each line should be?
What do you suggest?
Thanks for your help
Lnr
W/ Thanks to #JohanC.
added gridsize=1000 to the params of the violinplot and used ax.set(ylim=(0, upp)) to resize the y-axis to show the range from 0 to upp where upp is the upper limit. Much prettier lookin' graph:
I have x,y data points.
Using these points, I am trying to create a function to fit 50 (y points)points to generate the corresponding x coordinates.
But in my plot, when I try to zoom, the plot, I can see the 50 points provided is fitting the curve, but data points are slightly deviating from the plot. There is a small change from data point (in the range on delta=.001) with respect to the line generated from the 50 points if I zoom.
How do I generate a perfect curve which fits the data points along with the 50 points provided.
please refer the screenshot of the code
To cover 50 points perfectly you need to increase the order of the polynom. So instead of polyfit(x, y, 10) try polyfit(x, y, 49) ?
See https://arachnoid.com/polysolve/
A "perfect" fit (one in which all the data points are matched) can often be gotten by setting the degree of the regression to the number of data pairs minus one.
I am trying to use Julia to create a gif animation showing the change of density of data points with time (the data points are at the beginning concentrated at the center, and than spread to the sides, a little bit like 2D Gaussian of variance increasing with time). I have checked a catalogue of available kinds of plots in Julia:
http://docs.juliaplots.org/latest/examples/gr/
And I have tried contour plot, heatmap and 2D histogram. However, it seems that the grids of a heatmap or a contour plot have to be manually specified which is highly inconvenient. A 2D histogram serves the purpose better, but it's more related to the number of data points and when I want the plot to be more continuous by setting more bins, it cannot describe the density of data points well. Are there any good substitutes of the 2D density plot in matplotlib in Julia as the following?
https://python-graph-gallery.com/85-density-plot-with-matplotlib/
You use a package like KernelDensity to calculate the point density, then plot that. Here's an example
using StatsPlots, KernelDensity
a, b = randn(10000), randn(10000)
dens = kde((a,b))
plot(dens)
The philosophy, in the Plots package and other places in Julia, is that you generate the object you are interested in first, and then dispatch takes care of plotting it correctly.
Alternatively, you can always use PyPlot to plot anything using matplotlib directly.
I've collected test data for a system and would like to fit a line to the linear portion of the system.
Here's my current plot, which is very barebones:
This was generated by drawing a TH2D with the CANDLE option, which gives nice error bars. However, neither of the two obvious TH2 fit options, both of which take slices and fit to slices, seems to be able to fit a line to this candle plot. The only clear solution I see is to make an array of TH1Ds corresponding to my X axis, filling them, then extracting their means and standard deviations and using those in a TGraphErrors plot, which makes fitting easy.
Is there a way to fit a line directly in the candle plot? If not, is there a more elegant solution than the one that I outlined above?
I have some irregularly spaced data and need to analyze it. I can successfully interpolate this data onto a regular grid using mlab.griddata (or rather, the natgrid implementation of it). This allows me to use pcolormesh and contour to generate plots, extract levels, etc. Using plot.contour, I then extract a certain level using get_paths from the contour CS.collections().
Now, what I'd like to do is then, with my original irregularly spaced data, interpolate some quantities onto this specific contour line (i.e., NOT onto a regular grid). The similarly named griddata function from Scipy allows for this behavior, and it almost works. However, I find that as I increase the number of original points, I can get odd erratic behavior in the interpolation. I'm wondering if there's a way around this, i.e., another way to interpolate irregularly spaced (or regularly spaced data for that matter, since I can use my regularly spaced data from mlab.griddata) onto a specific line.
Let me show some numerical examples of what I'm talking about. Take a look at this figure:
The top left shows my data as points, and the line shows an extracted level of level=0 from some data D that I have at those points (x,y) [note, I have data 'D', 'Energy', and 'Pressure', all defined in this (x,y) space]. Once I have this curve, I can plot the interpolated quantities of D, Energy, and Pressure onto my specific line. First, note the plot of D (middle, right). It should be zero at all points, but it's not quite zero at all points. The likely cause of this is that the line that corresponds to the 0 level is generated from a uniform set of points that came from mlab.griddata, whereas the plot of 'D' is generated from my ORIGINAL data interpolated onto that level curve. You can also see some unphysical wiggles in 'Energy' and 'Pressure'.
Okay, seems easy enough, right? Maybe I should just get more original data points along my level=0 curve. Getting some more of these points, I then generate the following plots:
First look at the top left. You can see that I've sampled the hell out of the (x,y) space in the vicinity of my level=0 curve. Furthermore, you can see that my new "D" plot (middle, right) now correctly interpolates to zero in the region that it originally didn't. But now I get some wiggles at the start of the curve, as well as getting some other wiggles in the 'Energy' and 'Pressure' in this space! It is far from obvious to me that this should occur, since my original data points are still there and I've only supplemented additional points. Furthermore, some regions where my interpolation is going bad aren't even near the points that I added in the second run -- they are exclusively neighbored by my original points.
So this brings me to my original question. I'm worried that the interpolation that produces the 'Energy', 'D', and 'Pressure' curves is not working correctly (this is scigrid's griddata). Mlab's griddata only interpolates to a regular grid, whereas I want to interpolate to this specific line shown in the top left plot. What's another way for me to do this?
Thanks for your time!
After posting this, I decided to try scipy.interpolate.SmoothBivariateSpline, which produced the following result:
You can now see that my line is smoothed, so it seems like this will work. I'll mark this as the answer unless someone posts something soon that hints that there may be an even better solution.
Edit: As requested, below is some of the code used to generate these plots. I don't have a minimally working example, and the above plots were generated in a larger framework of code, but I'll write the important parts schematically below with comments.
# x,y,z are lists of data where the first point is x[0],y[0],z[0], and so on
minx=min(x)
maxx=max(x)
miny=min(y)
maxy=max(y)
# convert to numpy arrays
x=np.array(x)
y=np.array(y)
z=np.array(z)
# here we are creating a fine grid to interpolate the data onto
xi=np.linspace(minx,maxx,100)
yi=np.linspace(miny,maxy,100)
# here we interpolate our data from the original x,y,z unstructured grid to the new
# fine, regular grid in xi,yi, returning the values zi
zi=griddata(x,y,z,xi,yi)
# now let's do some plotting
plt.figure()
# returns the CS contour object, from which we'll be able to get the path for the
# level=0 curve
CS=plt.contour(x,y,z,levels=[0])
# can plot the original data if we want
plt.scatter(x,y,alpha=0.5,marker='x')
# now let's get the level=0 curve
for c in CS.collections:
data=c.get_paths()[0].vertices
# lineX,lineY are simply the x,y coordinates for our level=0 curve, expressed as arrays
lineX=data[:,0]
lineY=data[:,1]
# so it's easy to plot this too
plt.plot(lineX,lineY)
# now what to do if we want to interpolate some other data we have, say z2
# (also at our original x,y positions), onto
# this level=0 curve?
# well, first I tried using scipy.interpolate.griddata == scigrid like so
origdata=np.transpose(np.vstack((x,y))) # just organizing this data like the
# scigrid routine expects
lineZ2=scigrid(origdata,z2,data,method='linear')
# plotting the above curve (as plt.plot(lineZ2)) gave me really bad results, so
# trying a spline approach
Z2spline=SmoothBivariateSpline(x,y,z2)
# the above creates a spline object on our original data. notice we haven't EVALUATED
# it anywhere yet (we'll want to evaluate it on our level curve)
Z2Line=[]
# here we evaluate the spline along all our points on the level curve, and store the
# result as a new list
for i in range(0,len(lineX)):
Z2Line.append(Z2spline(lineX[i],lineY[i])[0][0]) # the [0][0] is just to get the
# value, which is enclosed in
# some array structure for some
# reason otherwise
# you can then easily plot this
plt.plot(Z2Line)
Hope this helps someone!