How to add a legend to matplotlib pie chart? - matplotlib

Using this example http://matplotlib.org/examples/pie_and_polar_charts/pie_demo_features.html
how could I add a legend to this pie chart?
My problem is that I have One big slice 88.4%, the second largest slice is 10.6%, and the other slices are 0.7 and 0.3%. The labels around the pie don't appear (except for the biggest slice) and neither the percentage values for the smaller slices. So I guess I can add a legend showing the names and the values. But I haven't found out how...
# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
# The slices will be ordered and plotted counter-clockwise.
labels = 'Rayos X', 'RMN en solución', 'Microscopía electrónica', 'Otros'
sizes = [88.4, 10.6, 0.7, 0.3]
colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']
explode = (0.1, 0, 0, 0)
plt.pie(sizes, explode=explode, labels=labels, colors=colors, shadow=True, startangle=90)
plt.legend(title="técnica")
# Set aspect ratio to be equal so that pie is drawn as a circle.
plt.axis('equal')
plt.show()

I checked your code, and the plt.legend() creates a legend, just how you want it to be; maybe set the loc="lower left", so it does not overlap with the relevant pieces of pie.
For me, the strings are displayed properly, besides the non standard chars - which might cause the problem that they are not displayed to you at all. Only the biggest slice and "Otros" do not contain special chars. Maybe also try to resize the figure, as they might be pushed out of the canvas. Please refer to how to write accents with matplotlib and try again with proper strings.
The percentages are not shown, because you did not set them to be shown. Please refer to the example posted by you, as you omitted autopct='%1.1f%%'which will plot the percentages. In this special case, I would rather not plot the percentages, as they will overlap just like the labels on the border, as some slices are too small. Maybe add these information to the legend.
Putting it all together (besides the special chars - I had some problems activating TeX), try the following code:
# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
# The slices will be ordered and plotted counter-clockwise.
labels = [r'Rayos X (88.4 %)', r'RMN en solucion (10.6 %)',
r'Microscopia electronica (0.7 %)', r'Otros (0.3 %)']
sizes = [88.4, 10.6, 0.7, 0.3]
colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']
patches, texts = plt.pie(sizes, colors=colors, startangle=90)
plt.legend(patches, labels, loc="best")
# Set aspect ratio to be equal so that pie is drawn as a circle.
plt.axis('equal')
plt.tight_layout()
plt.show()

You can change your legend following types-
best
upper right
upper left
lower left
lower right
right
center left
center right
lower center
upper center
center
state = stateData['State/UnionTerritory']
cases = stateData['ConfirmedIndianNational']
explode = stateData.ConfirmedIndianNational.apply(lambda x:x > 100)
explode = explode.apply(lambda x:0.2 if x == True else 0)
plt.title("Covid 19")
plt.pie(cases, explode=explode,autopct='%1.2f%%',shadow=True, radius=3)
plt.legend(state, loc="center")
plt.show()

Related

How to draw a grid in a bar-plot created with plt.vlines()

I want to create a bar-plot in python. I want this plot to be beautiful though and I don't like the looks of python's axes.bar() function. Therefore, I have decided to use plt.vlines(). The challenge here is that my x-data is a list that contains strings and not numerical data. When I plot my graph, the spacing between the two columns (in my example column 2 = 0) is pretty big:
Furthermore, I want a grid. However, I would like to have minor grid lines as well. I know how to get all of this if my data was numerical. But since my x-data contains strings, I don't know how to set x_max. Any suggestions?
Internally, the positions of the labels are numbered 0,1,... So setting the x-limits a bit before 0 and after the last, shows them more centered.
Usually, bars are drawn with their 'feet' on the ground, which can be set via plt.ylim(0, ...). Minor ticks can be positioned for example at multiples of 0.2. Setting the length of the ticks to zero lets the position count for the grid, but suppresses the tick mark.
from matplotlib import pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
labels = ['Test 1', 'Test 2']
values = [1, 0.7]
fig, ax = plt.subplots()
plt.vlines(labels, 0, values, colors='dodgerblue', alpha=.4, lw=7)
plt.xlim(-0.5, len(labels) - 0.5) # add some padding left and right of the bars
plt.ylim(0, 1.1) # bars usually have their 0 at the bottom
ax.xaxis.set_minor_locator(MultipleLocator(.2))
plt.tick_params(axis='x', which='both', length=0) # ticks not shown, but position serves for gridlines
plt.grid(axis='both', which='both', ls=':') # optionally set the linestyle of the grid
plt.show()

Geopandas reduce legend size (and remove white space below map)

I would like to know how to change the legend automatically generated by Geopandas. Mostly I would like to reduce its size because it's quite big on the generated image. The legend seems to take all the available space.
Additional question, do you know how to remove the empty space below my map ? I've tried with
pad_inches = 0, bbox_inches='tight'
but I still have an empty space below the map.
Thanks for your help.
This works for me:
some_geodataframe.plot(..., legend=True, legend_kwds={'shrink': 0.3})
Other options here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.colorbar.html
To show how to get proper size of a colorbar legend accompanying a map created by geopandas' plot() method I use the built-in 'naturalearth_lowres' dataset.
The working code is as follows.
import matplotlib.pyplot as plt
import geopandas as gpd
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world = world[(world.name != "Antarctica") & (world.name != "Fr. S. Antarctic Lands")] # exclude 2 no-man lands
plot as usual, grab the axes 'ax' returned by the plot
colormap = "copper_r" # add _r to reverse the colormap
ax = world.plot(column='pop_est', cmap=colormap, \
figsize=[12,9], \
vmin=min(world.pop_est), vmax=max(world.pop_est))
map marginal/face deco
ax.set_title('World Population')
ax.grid()
colorbar will be created by ...
fig = ax.get_figure()
# add colorbar axes to the figure
# here, need trial-and-error to get [l,b,w,h] right
# l:left, b:bottom, w:width, h:height; in normalized unit (0-1)
cbax = fig.add_axes([0.95, 0.3, 0.03, 0.39])
cbax.set_title('Population')
sm = plt.cm.ScalarMappable(cmap=colormap, \
norm=plt.Normalize(vmin=min(world.pop_est), vmax=max(world.pop_est)))
at this stage, 'cbax' is just a blank axes, with un needed labels on x and y axes blank-out the array of the scalar mappable 'sm'
sm._A = []
draw colorbar into 'cbax'
fig.colorbar(sm, cax=cbax, format="%d")
# dont use: plt.tight_layout()
plt.show()
Read the comments in the code for useful info.
The resulting plot:

Colorbar frame and color not aligned

I have a vexing issue with a colorbar and even after vigorous research I cannot find the question even being asked. I have a plot where I overlay a contour and a pcolormesh and I would like a colorbar to indicate values. That works fine except for one thing:
The colorbar frame and color are offset
The colorbar frame and the actual bar are offset such that below you have a white bit in the frame and on top the color is poking out. While the frame is aligned with the axis as desired, the colorbar is offset.
Here is a working example that emulates the situation I was in, i.e. multiple plots with insets.
import matplotlib.gridspec as gridspec
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
figheight = 4.2 - (2.1 - 49.519 / 25.4)
matplotlib.rcParams['figure.figsize'] = (5.25, figheight)
matplotlib.rcParams['axes.linewidth'] = 0.5
fig = plt.figure()
grid = gridspec.GridSpec(2, 1, height_ratios=[49.519 / 25.4 / figheight, 2.1 / figheight])
ax0 = plt.subplot(grid[0, 0])
ax1 = plt.subplot(grid[1, 0])
plt.tight_layout()
###############################################################################################
#
# Define position of inset
#
###############################################################################################
ax1.axis('off')
pos1 = ax1.get_position()
pos2 = matplotlib.transforms.Bbox([[pos1.x0, pos1.y0],
[.8*pos1.x1,
0.8*pos1.height + pos1.y0]])
left, bottom, width, height = [pos2.x0, pos2.y0, pos2.width, pos2.height]
ax2 = fig.add_axes([left, bottom, width, height])
###############################################################################################
#
# ax2 (inset) plot
#
###############################################################################################
pos2 = ax2.get_position()
ax2.axis('on')
x = np.linspace(0,5)
z = (np.outer(np.sin(x), np.cos(x))+1)*0.5
im = ax2.pcolormesh(z)
c = ax2.contour(z, linewidths=7)
ax2pos = ax2.get_position()
cbar_axis = fig.add_axes([ax2pos.x1+0.05,ax2pos.y0, .02, ax2pos.height])
colorbar = fig.colorbar(im, ax = ax2,
cax = cbar_axis, ticks = [0.1, .5, .9])
colorbar.outline.set_visible(True)
plot = 'Minimal.pdf'
fig.savefig(plot)
plt.close()
The problem persists in both the inline display and the saved .pdf if 'Inline' graphics backend is chosen. Using tight layout or not changes how badly the offset is depending on the size of the bar - same with using PyQT5 rather than inline graphics backend. I thought it was gone when I was changing between the various combinations, but I just realized it's still there.
I would appreciate any input.
As suggested by ImportanceOfBeingErnest I have tried using np.round on the figsize and that didn't change things. While you can fiddle around with sizes to make it look okay, it always stands over on one or the other side by some amount. When I change the graphics backend on Spyder 3 from 'Inline' to 'QT5' the problem becomes less severe with or without rounding. A summary of this is in this picture Colorbar overlap cases. Note that with not rounded and PyQT5 the problem still occurs, but is not as severe.
On inspection, it is clear that the colorbar is not only bleeding out over the top of its axes, but it's also positioned slightly to the left.
So, the problem here appears to be a conflict between the position of the colorbar axis and the colorbar itself when rasterization occurs. You can find more details on this issue in matplotlib's github repository, but I'll summarize what's going on here.
Colorbars are rasterized when the output is produced, so as to avoid artifacting issues during rendering. The position of the colorbar is snapped to the nearest integer pixels during the rasterization process, while the axis is kept where it is supposed to be. Then, when the output is produced, the colorbar falls within borders of fixed pixels of the image, despite the fact that the image is, itself, vectorized. Thus, there are two strategies that can be employed to avoid this mishap.
Use a finer DPI
The conversion from vectorized coordinates to rasterized coordinates takes place assuming a given DPI on the image. By default, this is set to be 72. However, by using more DPI, the overall shift induced by the rasterization process will be smaller, as the closest pixel the colorbar will snap to will be much nearer. Here, we change the output to have fig.savefig(plot,dpi=4000), and the problem goes away:
Note, however, that on my machine, the output size changed from 62 KB to 78 KB due to this change (although the DPI adjustment was also, admittedly, extreme). If you are worried about file sizes, you should pick a lower DPI that fixes the problem.
Use a different colormap
This rasterization happens when more than 50 colors are in the colorbar. Thus, we can do a quick test, setting our colormap to Pastel1 via
im = ax2.pcolormesh(z,cmap='Pastel1'). Here, the colorbar / axis mismatch is mitigated.
As a fallback, adopting a colorbar with fewer than 50 colors should mitigate this problem.
Rasterize the Axis
For completeness, there is also a third option. If you rasterize the colorbar axis, both the axis boundaries and the colormap will be rasterized, and you'll lose the offset. This will also rasterize your labels, and the axis will shift as one, breaking alignment with the nearby axis. For this, you just need to include cbar_axis.set_rasterized(True).
First, a way to overlay a contour and a pcolormesh and create a colorbar would be the following
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
x = np.linspace(0,5)
z = (np.outer(np.sin(x), np.cos(x))+1)*0.5
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
im = ax.pcolormesh(z)
c = ax.contour(z, linewidths=7)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", "5%", pad="3%")
colorbar = fig.colorbar(im, cax=cax, ticks = [0.1, .5, .9])
plt.show()
Now to the problem from the question. It is of course possible to create the axes to put the colorbar in manually. Replacing the colorbar creation with the code from the question still produces a nice image.
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,5)
z = (np.outer(np.sin(x), np.cos(x))+1)*0.5
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
plt.subplots_adjust(right=0.8)
im = ax.pcolormesh(z)
c = ax.contour(z, linewidths=7)
ax2pos = ax.get_position()
cbar_axis = fig.add_axes([ax2pos.x1+0.05,ax2pos.y0, .05, ax2pos.height])
colorbar = fig.colorbar(im, ax = ax,
cax = cbar_axis, ticks = [0.1, .5, .9])
colorbar.outline.set_visible(True)
plt.show()
Conclusion so far: The issue is not reproducible, at least not without a Minimal, Complete, and Verifiable example.
I'm uncertain about the reasons for the behaviour in the example from the question. However, it seems that it can be overcome by rounding the figure size to 3 significant digits
matplotlib.rcParams['figure.figsize'] = (5.25, np.round(figheight,3))

Coloring Intersection of Circles/Patches in Matplotlib

The following code:
# in ipython notebook, enable inline plotting with:
# %pylab inline --no-import-all
import matplotlib.pyplot as plt
# create some circles
circle1 = plt.Circle((-.5,0), 1, color='r', alpha=.2)
circle2 = plt.Circle(( .5,0), 1, color='b', alpha=.2)
# add them to the plot (bad form to use ;, but saving space)
# and control the display a bit
ax = plt.gca()
ax.add_artist(circle1); ax.add_artist(circle2)
ax.set_xlim(-2, 2); ax.set_ylim(-2, 2)
ax.set_aspect('equal')
# display it
plt.plot()
Produces the following plot:
I would like to specify the colors of the four regions (1) the background (currently white), (2 and 3) each individual event (the non-overlapping areas, currently blue and red), and (4) the intersection event (currently blended to purple). For example, I might color them red, green, blue, yellow -or- I might give them four different, precisely specified grayscale values (the later is more likely). [The colors will be generated based on characteristics of the underlying data.]
I specifically do not want to use alpha blending to "infer" a color in the intersection. I need to explicitly control the colors of all four regions.
I can think of a few strategies to solve this:
Ask mpl to extract the "primitive" patch objects that make up the three distinctly colored graphical regions (and do something similar to operate on the background) and then color them.
Given the circles, manually compute their intersections and color that intersection (somehow). Going point by point seems ugly.
Thanks!
I'm not 100% sure but I think matplotlib does not have the functionality to intersect polygons. But you could use shapely:
import shapely.geometry as sg
import matplotlib.pyplot as plt
import descartes
# create the circles with shapely
a = sg.Point(-.5,0).buffer(1.)
b = sg.Point(0.5,0).buffer(1.)
# compute the 3 parts
left = a.difference(b)
right = b.difference(a)
middle = a.intersection(b)
# use descartes to create the matplotlib patches
ax = plt.gca()
ax.add_patch(descartes.PolygonPatch(left, fc='b', ec='k', alpha=0.2))
ax.add_patch(descartes.PolygonPatch(right, fc='r', ec='k', alpha=0.2))
ax.add_patch(descartes.PolygonPatch(middle, fc='g', ec='k', alpha=0.2))
# control display
ax.set_xlim(-2, 2); ax.set_ylim(-2, 2)
ax.set_aspect('equal')
plt.show()

Reducing the distance between two boxplots

I'm drawing the bloxplot shown below using python and matplotlib. Is there any way I can reduce the distance between the two boxplots on the X axis?
This is the code that I'm using to get the figure above:
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['ytick.direction'] = 'out'
rcParams['xtick.direction'] = 'out'
fig = plt.figure()
xlabels = ["CG", "EG"]
ax = fig.add_subplot(111)
ax.boxplot([values_cg, values_eg])
ax.set_xticks(np.arange(len(xlabels))+1)
ax.set_xticklabels(xlabels, rotation=45, ha='right')
fig.subplots_adjust(bottom=0.3)
ylabels = yticks = np.linspace(0, 20, 5)
ax.set_yticks(yticks)
ax.set_yticklabels(ylabels)
ax.tick_params(axis='x', pad=10)
ax.tick_params(axis='y', pad=10)
plt.savefig(os.path.join(output_dir, "output.pdf"))
And this is an example closer to what I'd like to get visually (although I wouldn't mind if the boxplots were even a bit closer to each other):
You can either change the aspect ratio of plot or use the widths kwarg (doc) as such:
ax.boxplot([values_cg, values_eg], widths=1)
to make the boxes wider.
Try changing the aspect ratio using
ax.set_aspect(1.5) # or some other float
The larger then number, the narrower (and taller) the plot should be:
a circle will be stretched such that the height is num times the width. aspect=1 is the same as aspect=’equal’.
http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.set_aspect
When your code writes:
ax.set_xticks(np.arange(len(xlabels))+1)
You're putting the first box plot on 0 and the second one on 1 (event though you change the tick labels afterwards), just like in the second, "wanted" example you gave they are set on 1,2,3.
So i think an alternative solution would be to play with the xticks position and the xlim of the plot.
for example using
ax.set_xlim(-1.5,2.5)
would place them closer.
positions : array-like, optional
Sets the positions of the boxes. The ticks and limits are automatically set to match the positions. Defaults to range(1, N+1) where N is the number of boxes to be drawn.
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.boxplot.html
This should do the job!
As #Stevie mentioned, you can use the positions kwarg (doc) to manually set the x-coordinates of the boxes:
ax.boxplot([values_cg, values_eg], positions=[1, 1.3])