All permutations of a tree - serialization

I need an algorithm that computes all possible permutations of a given tree structure, for example:
4 3
\ |
\ 2
\ /
1
This means, that (4) needs to be ordered before (1), (3) before (2) and (2) before (1).Thus the output should contain all of and not more than the following:
[4,3,2,1]
[3,4,2,1]
[3,2,4,1]
An invalid order would be for example
[4,2,3,1]
as (2) is before (3), but (2) is the successor of (3) in the graph. Simply computing all permutations and filtering invalid orderings doesn't work for reasons of efficiency.
I don't need the exact code, an idea of how this could generally be done would already be very helpful.

This problem is to topological sort a directed graph.
It could be resolved by DFS with time complexity O(E+V).
http://en.wikipedia.org/wiki/Topological_sorting

In case somebody is still interested in this, an algorithm to my problem has already been presented in the 70s by Varol and Rotem in their paper "An algorithm to generate all topological sorting arrangements".
Actually searching for topological sort would have helped me to find the solution earlier, however, the article can be found here: http://comjnl.oxfordjournals.org/content/24/1/83.abstract

Related

What is wrong with this P argument

My teacher made this argument and asked us what could be wrong with it.
for an array A of n distinct numbers. Since there are n! permutations of A,
we cannot check for each permutation whether it is sorted, in a total time which
is polynomial in n. Therefore, sorting A cannot be in P.
my friend thought that it just should be : therefore sorting a cannot be in NP.
Is that it or are we thinking to easily about it?
The problem with this argument is that it fails to adequately specify the exact problem.
Sorting can be linear-time (O(n)) in the number of elements to sort, if you're sorting a large list of integers drawn from a small pool (counting sort, radix sort).
Sorting can be linearithmic-time (O(nlogn)) in the number of elements to sort, if you're sorting a list of arbitrary things which are all totally ordered according to some ordering relation (e.g., less than or equal to on the integers).
Sorting based on a partial order (e.g. topological sorting) must be analyzed in yet another way.
We can imagine a problem like sorting whereby the sortedness of a list cannot be determined by comparing adjacent entries only. In the extreme case, sortedness (according to what we are considering to be sorting) might only be verifiable by checking the entire list. If our kind of sorting is designed so as to guarantee there is exactly one sorted permutation of any given list, the time complexity is factorial-time (O(n!)) and the problem is not in P.
That's the real problem with this argument. If your professor is assuming that "sorting" refers to sorting integers not in any particular small range, the problem with the argument then is that we do not need to consider all permutations in order to construct the sorted one. If I have a bag with 100 marbles and I ask you to remove three marbles, the time complexity is constant-time; it doesn't matter that there are n(n-1)(n-2)/6 = 161700, or O(n^3), ways in which you can accomplish this task.
The argument is a non-sequitur, the conclusion does not logically follow from the previous steps. Why doesn't it follow? Giving a satisfying answer to that question requires knowing why the person who wrote the argument thinks it is correct, and then addressing their misconception. In this case, the person who wrote the argument is your teacher, who doesn't think the argument is correct, so there is no misconception to address and hence no completely satisfying answer to the question.
That said, my explanation would be that the argument is wrong because it proposes a specific algorithm for sorting - namely, iterating through all n! permutations and choosing the one which is sorted - and then assumes that the complexity of the problem is the same as the complexity of that algorithm. This is a mistake because the complexity of a problem is defined as the lowest complexity out of all algorithms which solve it. The argument only considered one algorithm, and didn't show anything about other algorithms which solve the problem, so it cannot reach a conclusion about the complexity of the problem itself.

Example for an algorithm with greater than n splits

I was doing the derivation for masters theorem using the tree method and I noticed something.
So we have:
$T(n)=a*T(n/b) + n^c$
From this: we notice, the last level of the tree will have $a^(log_b_n)$ splits, which equals $n^(log_b_a)$
Now, if $a=b$, I get n splits in the last level, which is I've seen used in quick sort and merge sort, and if a
Is there a practical example for greater than n splits?
Where we actually repeat operations for elements?
*Also, math overflow formatting doesn't seem to work. Would appreciate if anyone helps.
The classical matrix multiplication by divide and conquer would be such an example. The recurrence relation is: T(n)=8T(n/2)+ Theta(n^2). Another would be Straussen algorithm.
Math notation is (sadly) limited to only a few stackexchange sites.

Cryptographic Hash Function

I have an exam tomorrow on cryptography and came across an old exam question on hash functions and finding out the probability of collision of two hash values being the same, but I don't know how to calculate it. The question is:
If the hash value is a 20 bit output and allowable inputs must not exceed 2^64 bits, what is the probability of two randomly chosen values yielding a collision?
Was hoping someone could provide a solution.
Thanks.
Should be 1 / (2 ^ 20). (It should be independent of the length of the Input if you consider 2 randomly choosen inputs (and not ALL possible inputs), given the hash function is proper.) So I guess the additional Information about the length of the Input is just to make you crazy.

Crossword generator(swedish crossword) - Java

I'm trying to create a simple Java generator crossword(swedish crossword) - just for fun.
I downloaded the vocabulary words from the Internet(about 300,000 words).
These words I have save in a HashMap (sorted by word length).
The input of the generator is the size of X and Y and a puzzle.
Puzzle I inserted randomly into the matrix
But I am not able to figure out a working algorithm to fill the rest of the matrix.
For example:
X X X X
X D O G
X X X X
Does anybody have any advice?
Or some useful article on the internet?
thank you.
An algorithm for compiling crosswords (like swedish, scandinavian, etc..) is described here
(among others of course :) )
https://stackoverflow.com/a/23435654/3591273
UPDATE: Posting the main steps of the algorithm described in the SO link given (per the comment)
First step of the algorithm is select an empty wordslot (grid word) at random and fill it with a candidate word from its associated wordlist (randomization enables to produce different solutons in consecutive executions of the algorithm) ( complexity O(1) or O(N) )
For each still empty word slots (that have intersections with already filled wordslots), compute a constraint ratio (this can vary, sth simple is the number of available solutions at that step) and sort the empty wordslots by this ratio ( complexity O(NlogN) or O(N) )
Loop through the empty wordslots computed at previous step and for each one try a number of cancdidate solutions (making sure that "arc-consistency is retained", ie grid has a solution after this step if this word is used) and sort them according to maximum availability for next step (ie next step has a maximum possible solutions if this word is used at that time in that place, etc..) ( complexity O(N*MaxCandidatesUsed) )
Fill that word (mark it as filled and go to step 2)
If no word found that satisfies the criteria of step .3 try to backtrack to another candidate solution of some previous step (criteria can vary here) ( complexity O(N) )
If backtrack found, use the alternative and optionally reset any already filled words that might need reset (mark them as unfilled again) ( complexity O(N) )
If no backtrack found, the no solution can be found (at least with this configuration, initial seed etc..)
Else when all wordlots are filled you have one solution
This algorithm does a random consistent walk of the solution tree of the problem. If at some point there is a dead end, it does a backtrack to a previous node and follow another route. Untill either a solution found or number of candidates for the various nodes are exhausted.
The consistency part makes sure that a solution found is indeed a solution and the random part enables to produce different solutions in different executions and also on the average have better performance.
PS was trying to avoid copy-paste back-and-forth between different SO answers, but ok maybe a some summary can be useful

Building ranking with genetic algorithm,

Question after BIG edition :
I need to built a ranking using genetic algorithm, I have data like this :
P(a>b)=0.9
P(b>c)=0.7
P(c>d)=0.8
P(b>d)=0.3
now, lets interpret a,b,c,d as names of football teams, and P(x>y) is probability that x wins with y. We want to build ranking of teams, we lack some observations P(a>d),P(a>c) are missing due to lack of matches between a vs d and a vs c.
Goal is to find ordering of team names, which the best describes current situation in that four team league.
If we have only 4 teams than solution is straightforward, first we compute probabilities for all 4!=24 orderings of four teams, while ignoring missing values we have :
P(abcd)=P(a>b)P(b>c)P(c>d)P(b>d)
P(abdc)=P(a>b)P(b>c)(1-P(c>d))P(b>d)
...
P(dcba)=(1-P(a>b))(1-P(b>c))(1-P(c>d))(1-P(b>d))
and we choose the ranking with highest probability. I don't want to use any other fitness function.
My question :
As numbers of permutations of n elements is n! calculation of probabilities for all
orderings is impossible for large n (my n is about 40). I want to use genetic algorithm for that problem.
Mutation operator is simple switching of places of two (or more) elements of ranking.
But how to make crossover of two orderings ?
Could P(abcd) be interpreted as cost function of path 'abcd' in assymetric TSP problem but cost of travelling from x to y is different than cost of travelling from y to x, P(x>y)=1-P(y<x) ? There are so many crossover operators for TSP problem, but I think I have to design my own crossover operator, because my problem is slightly different from TSP. Do you have any ideas for solution or frame for conceptual analysis ?
The easiest way, on conceptual and implementation level, is to use crossover operator which make exchange of suborderings between two solutions :
CrossOver(ABcD,AcDB) = AcBD
for random subset of elements (in this case 'a,b,d' in capital letters) we copy and paste first subordering - sequence of elements 'a,b,d' to second ordering.
Edition : asymetric TSP could be turned into symmetric TSP, but with forbidden suborderings, which make GA approach unsuitable.
It's definitely an interesting problem, and it seems most of the answers and comments have focused on the semantic aspects of the problem (i.e., the meaning of the fitness function, etc.).
I'll chip in some information about the syntactic elements -- how do you do crossover and/or mutation in ways that make sense. Obviously, as you noted with the parallel to the TSP, you have a permutation problem. So if you want to use a GA, the natural representation of candidate solutions is simply an ordered list of your points, careful to avoid repitition -- that is, a permutation.
TSP is one such permutation problem, and there are a number of crossover operators (e.g., Edge Assembly Crossover) that you can take from TSP algorithms and use directly. However, I think you'll have problems with that approach. Basically, the problem is this: in TSP, the important quality of solutions is adjacency. That is, abcd has the same fitness as cdab, because it's the same tour, just starting and ending at a different city. In your example, absolute position is much more important that this notion of relative position. abcd means in a sense that a is the best point -- it's important that it came first in the list.
The key thing you have to do to get an effective crossover operator is to account for what the properties are in the parents that make them good, and try to extract and combine exactly those properties. Nick Radcliffe called this "respectful recombination" (note that paper is quite old, and the theory is now understood a bit differently, but the principle is sound). Taking a TSP-designed operator and applying it to your problem will end up producing offspring that try to conserve irrelevant information from the parents.
You ideally need an operator that attempts to preserve absolute position in the string. The best one I know of offhand is known as Cycle Crossover (CX). I'm missing a good reference off the top of my head, but I can point you to some code where I implemented it as part of my graduate work. The basic idea of CX is fairly complicated to describe, and much easier to see in action. Take the following two points:
abcdefgh
cfhgedba
Pick a starting point in parent 1 at random. For simplicity, I'll just start at position 0 with the "a".
Now drop straight down into parent 2, and observe the value there (in this case, "c").
Now search for "c" in parent 1. We find it at position 2.
Now drop straight down again, and observe the "h" in parent 2, position 2.
Again, search for this "h" in parent 1, found at position 7.
Drop straight down and observe the "a" in parent 2.
At this point note that if we search for "a" in parent one, we reach a position where we've already been. Continuing past that will just cycle. In fact, we call the sequence of positions we visited (0, 2, 7) a "cycle". Note that we can simply exchange the values at these positions between the parents as a group and both parents will retain the permutation property, because we have the same three values at each position in the cycle for both parents, just in different orders.
Make the swap of the positions included in the cycle.
Note that this is only one cycle. You then repeat this process starting from a new (unvisited) position each time until all positions have been included in a cycle. After the one iteration described in the above steps, you get the following strings (where an "X" denotes a position in the cycle where the values were swapped between the parents.
cbhdefga
afcgedbh
X X X
Just keep finding and swapping cycles until you're done.
The code I linked from my github account is going to be tightly bound to my own metaheuristics framework, but I think it's a reasonably easy task to pull the basic algorithm out from the code and adapt it for your own system.
Note that you can potentially gain quite a lot from doing something more customized to your particular domain. I think something like CX will make a better black box algorithm than something based on a TSP operator, but black boxes are usually a last resort. Other people's suggestions might lead you to a better overall algorithm.
I've worked on a somewhat similar ranking problem and followed a technique similar to what I describe below. Does this work for you:
Assume the unknown value of an object diverges from your estimate via some distribution, say, the normal distribution. Interpret your ranking statements such as a > b, 0.9 as the statement "The value a lies at the 90% percentile of the distribution centered on b".
For every statement:
def realArrival = calculate a's location on a distribution centered on b
def arrivalGap = | realArrival - expectedArrival |
def fitness = Σ arrivalGap
Fitness function is MIN(fitness)
FWIW, my problem was actually a bin-packing problem, where the equivalent of your "rank" statements were user-provided rankings (1, 2, 3, etc.). So not quite TSP, but NP-Hard. OTOH, bin-packing has a pseudo-polynomial solution proportional to accepted error, which is what I eventually used. I'm not quite sure that would work with your probabilistic ranking statements.
What an interesting problem! If I understand it, what you're really asking is:
"Given a weighted, directed graph, with each edge-weight in the graph representing the probability that the arc is drawn in the correct direction, return the complete sequence of nodes with maximum probability of being a topological sort of the graph."
So if your graph has N edges, there are 2^N graphs of varying likelihood, with some orderings appearing in more than one graph.
I don't know if this will help (very brief Google searches did not enlighten me, but maybe you'll have more success with more perseverance) but my thoughts are that looking for "topological sort" in conjunction with any of "probabilistic", "random", "noise," or "error" (because the edge weights can be considered as a reliability factor) might be helpful.
I strongly question your assertion, in your example, that P(a>c) is not needed, though. You know your application space best, but it seems to me that specifying P(a>c) = 0.99 will give a different fitness for f(abc) than specifying P(a>c) = 0.01.
You might want to throw in "Bayesian" as well, since you might be able to start to infer values for (in your example) P(a>c) given your conditions and hypothetical solutions. The problem is, "topological sort" and "bayesian" is going to give you a whole bunch of hits related to markov chains and markov decision problems, which may or may not be helpful.