Unable to use the ORM .All() of Beego - orm

Here's an extremely simple piece of code that should work according to the documentation.
package controllers
import (
"github.com/astaxie/beego"
"github.com/astaxie/beego/orm"
"fmt"
)
type TestController struct {
beego.Controller
}
type Ticket struct {
Id int `orm:"auto"`
EventId int
EntryId int
}
func (this *TestController) Get() {
o := orm.NewOrm()
tickets := new([]*Ticket)
qs, _ := o.QueryTable(new(Ticket)).Filter("EventId", 2).All(&tickets)
fmt.Print(qs)
this.Ctx.WriteString("test controller")
}
func init(){
orm.RegisterModel(new(Ticket))
}
This results in Beego crashing with the following error:
GoEventKeeper:wrong object type `*[]*controllers.Ticket` for rows scan, need *[]*rohan.com/GoEventKeeper/controllers.Ticket or *rohan.com/GoEventKeeper/controllers.Ticket
I feel like this shouldn't be happening, obviously I only have one Ticket struct inside controllers so it seems to be comparing the wrong values with eachother?
What do i need to do to resolve this?

qs, _ := o.QueryTable(new(Ticket)).Filter("EventId", 2).All(&tickets)
changes to
qs, _ := o.QueryTable(new(Ticket)).Filter("EventId", 2).All(tickets)
becasue tickets already is point
more detail please refer http://beego.me/docs/mvc/model/query.md#all

Related

Get pointers to all fields of a struct dynamically using reflection

I'm trying to build a simple orm layer for golang.
Which would take a struct and generate the cols [] which can then be passed to sql function
rows.Scan(cols...) which takes pointers of fields in the struct corresponding to each of the columns it has found in the result set
Here is my example struct
type ExampleStruct struct {
ID int64 `sql:"id"`
aID string `sql:"a_id"`
UserID int64 `sql:"user_id"`
And this is my generic ORM function
func GetSqlColumnToFieldMap(model *ExampleStruct) map[string]interface{} {
typeOfModel := reflect.TypeOf(*model)
ValueOfModel := reflect.ValueOf(*model)
columnToDataPointerMap := make(map[string]interface{})
for i := 0; i < ValueOfModel.NumField(); i++ {
sql_column := typeOfModel.Field(i).Tag.Get("sql")
structValue := ValueOfModel.Field(i)
columnToDataPointerMap[sql_column] = structValue.Addr()
}
return columnToDataPointerMap
}
Once this method works fine i can use the map it generates to create an ordered list of sql pointers according to the column_names i get in rows() object
However i get below error on the .Addr() method call
panic: reflect.Value.Addr of unaddressable value [recovered]
panic: reflect.Value.Addr of unaddressable value
Is it not possible to do this ?
Also in an ideal scenario i would want the method to take an interface instead of *ExampleStruct so that it can be reused across different db models.
The error says the value whose address you want to get is unaddressable. This is because even though you pass a pointer to GetSqlColumnToFieldMap(), you immediately dereference it and work with a non-pointer value later on.
This value is wrapped in an interface{} when passed to reflect.ValueOf(), and values wrappped in interfaces are not addressable.
You must not dereference the pointer, but instead use Type.Elem() and Value.Elem() to get the element type and pointed value.
Something like this:
func GetSqlColumnToFieldMap(model *ExampleStruct) map[string]interface{} {
t := reflect.TypeOf(model).Elem()
v := reflect.ValueOf(model).Elem()
columnToDataPointerMap := make(map[string]interface{})
for i := 0; i < v.NumField(); i++ {
sql_column := t.Field(i).Tag.Get("sql")
structValue := v.Field(i)
columnToDataPointerMap[sql_column] = structValue.Addr()
}
return columnToDataPointerMap
}
With this simple change it works! And it doesn't depend on the parameter type, you may change it to interface{} and pass any struct pointers.
func GetSqlColumnToFieldMap(model interface{}) map[string]interface{} {
// ...
}
Testing it:
type ExampleStruct struct {
ID int64 `sql:"id"`
AID string `sql:"a_id"`
UserID int64 `sql:"user_id"`
}
type Point struct {
X int `sql:"x"`
Y int `sql:"y"`
}
func main() {
fmt.Println(GetSqlColumnToFieldMap(&ExampleStruct{}))
fmt.Println(GetSqlColumnToFieldMap(&Point{}))
}
Output (try it on the Go Playground):
map[a_id:<*string Value> id:<*int64 Value> user_id:<*int64 Value>]
map[x:<*int Value> y:<*int Value>]
Note that Value.Addr() returns the address wrapped in a reflect.Value. To "unwrap" the pointer, use Value.Interface():
func GetSqlColumnToFieldMap(model interface{}) map[string]interface{} {
t := reflect.TypeOf(model).Elem()
v := reflect.ValueOf(model).Elem()
m := make(map[string]interface{})
for i := 0; i < v.NumField(); i++ {
colName := t.Field(i).Tag.Get("sql")
field := v.Field(i)
m[colName] = field.Addr().Interface()
}
return m
}
This will output (try it on the Go Playground):
map[a_id:0xc00007e008 id:0xc00007e000 user_id:0xc00007e018]
map[x:0xc000018060 y:0xc000018068]
For an in-depth introduction to reflection, please read blog post: The Laws of Reflection

Go validator with sql null types?

I am having problems getting the golang validator to work with SQL null types. Here's an example of what I tried:
package main
import (
"database/sql"
"database/sql/driver"
"log"
"gopkg.in/go-playground/validator.v9"
)
// NullInt64
type NullInt64 struct {
sql.NullInt64
Set bool
}
func MakeNullInt64(valid bool, val int64) NullInt64 {
n := NullInt64{}
n.Set = true
n.Valid = valid
if valid {
n.Int64 = val
}
return n
}
func (n *NullInt64) Value() (driver.Value, error) {
if !n.NullInt64.Valid {
return nil, nil
}
return n.NullInt64.Int64, nil
}
type Thing struct {
N2 NullInt64 `validate:"min=10"`
N3 int64 `validate:"min=10"`
N4 *int64 `validate:"min=10"`
}
func main() {
validate := validator.New()
n := int64(6)
number := MakeNullInt64(true, n)
thing := Thing{number, n, &n}
e := validate.Struct(thing)
log.Println(e)
}
When I run this code, I only get this output:
Key: 'Thing.N3' Error:Field validation for 'N3' failed on the 'min'
tag
Key: 'Thing.N4' Error:Field validation for 'N4' failed on the
'min' tag
The problem is that I want it to also show that Thing.N2 failed for the same reasons as Thing.N3 and Thing.N4.
I tried introducing the func (n *NullInt64) Value() method because it was mentioned in the documentation. But I think I misunderstood something. Can anyone tell me what I did wrong?
UPDATE
There is an Example specifically for that. You may check it out. My other proposed solution should still work though.
Since the value you are trying to validate is Int64 inside sql.NullInt64, the easiest way would be to remove the validate tag and just register a Struct Level validation using:
validate.RegisterStructValidation(NullInt64StructLevelValidation, NullInt64{})
while NullInt64StructLevelValidation is a StructLevelFunc that looks like this:
func NullInt64StructLevelValidation(sl validator.StructLevel) {
ni := sl.Current().Interface().(NullInt64)
if ni.NullInt64.Int64 < 10 {
sl.ReportError(ni.NullInt64.Int64, "Int64", "", "min", "")
}
}
Note #1: this line thing := Thing{number,&number,n,&n} has one argument too many. I assume you meant thing := Thing{number, n, &n}
Note #2: Go tooling including gofmt is considered to be one of the most powerful features of the language. Please consider using it/them.
EDIT #1:
I don't think implementing Valuer interface is of any value in this context.

Golang database manager api concept, error with type assertion

The base concept creating a Database Manager API for getting data through an API. I am using the GORM for getting data of the instances of the strcuts. So there is 300-400 struct which represents the tables.
type Users struct {
ID int64
Name string
}
type Categories struct {
ID int64
Category string
}
The next step I implement a function which is return the correct instance of the struct by table name, what I get through the API endpoint param.
func GetModel(model string) interface{} {
switch model {
case "users":
return Users{}
case "categories"
return Categories{}
}
return false
}
After there is an operations struct where the only one field is the DB. There is methods, for example the GetLast() where I want to use the GORM db.Last(&users) function.
func (o Operations) GetLast(model string) interface{} {
modelStruct := GetModel(model)
.
.
.
return o.DB.Last(&modelStruct)
}
There is points so this is what I don't know. The current solution is not working because in this case it is an interface{} I need make a type assertion more info in this question. The type assertion is looks like:
func (o Operations) GetLast(model string) interface{} {
modelStruct := GetModel(model)
.
test := modelStruct.(Users)
.
return o.DB.Last(&test)
}
This solution working, but in this case I lost the modularity. I try using the reflect.TypeOf(modelStruct), but it is also not working because the result of the reflect.TypeOf is a reflect.Type, with is not a golang type.
Basically I solved the problem, for getting the model as a pointer, and after I return it back as a json file.
So my model is the following:
var Models = map[string]interface{}{
"users": new(Users),
"categories": new(Categories),
}
And it is return back a new model by table type. what I can use for gorm First() function. Then json Marshal it, and return.
func (o Operation) First(model string, query url.Values) string {
modelStruct := Models[model]
db := o.DB
db.First(modelStruct)
response, _ := json.Marshal(modelStruct)
clear(modelStruct)
return string(response)
}
Before the return I clear the model pointer because the First() function store callbacks for the latest queries.
func clear(v interface{}) {
p := reflect.ValueOf(v).Elem()
p.Set(reflect.Zero(p.Type()))
}

Accessing Data From Interfaces in Go

I am trying to implement a simple api in Golang. My experience in the backend is more with python and node, so I am having some difficulty printing out data held within the interface since it won't allow me to index it. I have searched around and several people have asked similar questions when the interface is one value, but not when the interface is a slice, I believe ([]interface{}). I have tried vaping the interface to no avail.
When I point the browser to /quandl/ddd/10 I would like to fmt.Println the specific numerical data, i.e. ("2017-01-13",
15.67,
16.41,
15.67,
16.11,
3595248,
0,
1,
15.67,
16.41,
15.67,
16.11,
3595248
])
package main
import (
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"net/url"
"github.com/fatih/color"
"github.com/gorilla/mux"
)
type QuandlResponse struct {
SourceCode string `json:"source_code"`
SourceName string `json:"source_name"`
Code string `json:"code"`
Frequency string `json:"frequency"`
FromDate string `json:"from_date"`
ToDate string `json:"to_date"`
Columns []string `json:"column_names"`
Data interface{} `json:"data"`
}
func getContent(w http.ResponseWriter, r *http.Request) {
stock := mux.Vars(r)["stock"]
limit := mux.Vars(r)["limit"]
url := "https://www.quandl.com/api/v1/datasets/WIKI/" + url.QueryEscape(stock) + ".json?&limit=" + url.QueryEscape(limit) + "&auth_token=XXXXX"
response, err := http.Get(url)
if err != nil {
fmt.Println(err)
}
contents, err := ioutil.ReadAll(response.Body)
var result QuandlResponse
json.Unmarshal(contents, &result)
json.NewEncoder(w).Encode(result)
fmt.Println(result.Data[0])
}
func callAll() {
rabbit := mux.NewRouter()
rabbit.HandleFunc("/quandl/{stock}/{limit}", getContent)
http.ListenAndServe(":8000", rabbit)
}
func main() {
color.Blue("Running Server #localhost:8000")
callAll()
}
If you know that the type of Data is []interface{}, you can do a type assertion:
slice := result.Data.([]interface{})
fmt.Println(slice[0])
If there are several possibilities for the type of Data, you can use a type switch:
switch data := result.Data.(type) {
case []interface{}:
fmt.Println(data[0])
case string:
fmt.Println(data)
default:
// unexpected type
}
You may also want to look at the reflect package if your requirements are more complicated.

Generate a tree of structs with testing/quick, respecting invariants

I have a tree of structs which I'd like to test using testing/quick, but constraining it to within my invariants.
This example code works:
var rnd = rand.New(rand.NewSource(time.Now().UnixNano()))
type X struct {
HasChildren bool
Children []*X
}
func TestSomething(t *testing.T) {
x, _ := quick.Value(reflect.TypeOf(X{}), rnd)
_ = x
// test some stuff here
}
But we hold HasChildren = true whenever len(Children) > 0 as an invariant, so it'd be better to ensure that whatever quick.Value() generates respects that (rather than finding "bugs" that don't actually exist).
I figured I could define a Generate function which uses quick.Value() to populate all the variable members:
func (X) Generate(rand *rand.Rand, size int) reflect.Value {
x := X{}
throwaway, _ := quick.Value(reflect.TypeOf([]*X{}), rand)
x.Children = throwaway.Interface().([]*X)
if len(x.Children) > 0 {
x.HasChildren = true
} else {
x.HasChildren = false
}
return reflect.ValueOf(x)
}
But this is panicking:
panic: value method main.X.Generate called using nil *X pointer [recovered]
And when I change Children from []*X to []X, it dies with a stack overflow.
The documentation is very thin on examples, and I'm finding almost nothing in web searches either.
How can this be done?
Looking at the testing/quick source code it seems that you can't create recursive custom generators and at the same time reuse the quick library facilities to generate the array part of the struct, because the size parameter, that is designed to limit the number of recursive calls, cannot be passed back into quick.Value(...)
https://golang.org/src/testing/quick/quick.go (see around line 50)
in your case this lead to an infinite tree that quickly "explodes" with 1..50 leafs at each level (that's the reason for the stack overflow).
If the function quick.sizedValue() had been public we could have used it to accomplish your task, but unfortunately this is not the case.
BTW since HasChildren is an invariant, can't you simply make it a struct method?
type X struct {
Children []*X
}
func (me *X) HasChildren() bool {
return len(me.Children) > 0
}
func main() {
.... generate X ....
if x.HasChildren() {
.....
}
}