NServiceBus ServiceInsight - Monitor Multiple Error and Audit - nservicebus

I have a couple questions regarding ServiceInsight that I was hoping someone could shed some light on.
Can I monitor multiple error queues and audit queues? If so how do I configure it to monitor those queues.
I understand that messages processed in the error queue are moved to the error.log queue. What happens to the messages processed in the audit queue, i.e where do they go after the management service processes them.
Where are the messages ultimately stored by the management process, i.e. are they stored in RavenDB and if so under what database.
In addition, how do I remove or delete message conversations in the endpoint explorer. For example, let’s say I just want to clear everything out.
Any additional insight (no pun intended) you can provide regarding the management and use of insight would be greatly appreciated.

Question: Can I monitor multiple error queues and audit queues? If so how do I configure it to monitor those queues.
Answer: ServiceInsight receives its data from a management service (AKA "ServiceControl") that collects its data from audit (and error) queues. A single instance of ServiceControl can connect to a single audit and error queues (in a single transport type). If you install multiple ServiceControl instances that collect auditing and error data form multiple queues, you can use serviceInsight to connect to each of the ServiceControl instances. Currently (in beta) ServiceInsight supports one connection at a time, but you can easily switch between connection or open multiple instances of ServiceInsight, each connecting to a different ServiceControl instance.
Question: I understand that messages processed in the error queue are moved to the error.log queue. What happens to the messages processed in the audit queue, i.e where do they go after the management service processes them.
Answer: audit messages are consumed, processed and stored in the ServiceControl instance auditing database (RavenDB).
Question: Where are the messages ultimately stored by the management process, i.e. are they stored in RavenDB and if so under what database.
Answer: Yes, they are stored (by default) in the embedded RavenDB database that is used by the management service (AKA "ServiceControl"). You can locate it under "C:\ProgramData\Particular\ServiceBus.Management"
Question: In addition, how do I remove or delete message conversations in the endpoint explorer. For example, let’s say I just want to clear everything out.
Answer: We will be adding full purge / delete support for this purpose in an upcoming beta update. for immediate purging of old messages, you can use the RavenDB studio based on the path specific above.
Please let me know of these answer your questions and do not hesitate to raise any other questions you may have!
Best regards,
Danny Cohen
Particular Software (NServiceBus Ltd.)

Related

Why NServiceBus ForwardRecievedMessagesTo and what are the performance implications of using it?

What is the intended usage of ForwardRecievedMessagesTo?
I read some where that it is to support auditing. Is there any harm in using it as a solution to ensure that messages have been processed and if not reprocessing them? lets say a message was sent to queue_A#server_A and also forwarded to q_All#server_All and before the message was handled, machine_A died irrecoverably. In such a case, I could have a handler pick up messages from q_All#sever_All and check against a database table if the message has been processed. If not reprocess(publish or send) the message or save it in a database table.
Also, what is the performance implication of using forwardreceivedmessageto? How is it different from journalling?
Yes, I am trying to not use msmq clustering.
The feature is there to support auditing. If your machine dies during processing then the messages will backup at the sending machine and would continue to flow after the machine recovered. This means you must size the disk on the sending machine appropriately. You could leverage auditing to accomplish this and the overhead would be minimal. The implication would be the time it would take to complete the distributed transaction to the other machine where your audit queue lives which should be very small.

Is there a way to see what subscriptions exist currently for NServiceBus

I am concerned with my NServiceBus solution.
I have a "MessageHub" that publishes some very important messages. But sometimes it loses track of its subscriptions and just discards the message because it thinks no one is listening.
I have tried turning on "NServiceBus.Integration" to store the subscriptions. But despite that, I still have issues with bad start up order where it thinks nothing is listening.
Is there a way to debug this process? Try to figure out why it is getting confused?
I don't even know a way to look at what subscriptions it "thinks" it has...
I went with NServiceBus because it is not supposed to lose data ever. Now I am losing large chucks. I know it is a config issue, but it is causing much grief.
What is probably happening in your case is that you are using MSMQ for subscription storage. Even though it's possible for subscriptions to endure for a while, using MSMQ to store things long term is always going to be volatile.
For durable subscriptions storage (which survive "forever") you should be using SQL server as your subscription storage.
Note: You can always view your current subscriptions whether you are using sql or msmq to store them. In SQL just look in the subscriptions table and for msmq look in the publisher's subscription queue.
UPDATE
Since version 3 I have been using RavenDb which is the default.
In my experiance, to get the subscriptions assigned correctly, one should first start the EventHandler projects and then when they are all idle, start the CommandHandlers (Publishers).
You can see what messages are being Subscribed to using Service Bus MQ Manager, it has a dialog listing all "messages" and their subscribers/publishers. A side project of mine, its free and open sourced.
http://blog.halan.se/page/Service-Bus-MQ-Manager.aspx

NService Bus: Nitty-Gritty Deployment Issues

Please consider the following questions in the context of multiple publications from a scaled out publisher (using DB subscription storage) and multiple subscriptions with scaled out subscribers (using distributors) where installs and uninstalls happen regularly for initial deployments, upgrades, etc. using automated MSI's.
Using DB subscription storage, what happens if the DB goes down? If access to the Subscription DB is required in order to Publish a message, how will it be delivered? Will it get lost? Will the call to Bus.Publish throw an exception?
Assuming you need to have no down-time deployments: What if you want to move your subscription DB for a particular publication to a different server? How do you manage a transition like this?
Same question goes for a distributor on the subscriber side: What if you want to move your distributor endpoint? One scenario I can think of is if you have multiple subscriptions utilizing a single distributor machine, it might be hard if you want to move some of them to another distributor server to reduce load.
What would the install/uninstall scenarios look like for a setup like this (both initially, and for continuous upgrades)? It seems like you would want to have some special install/uninstall scripts for deployment of the "logical publication" and subscription DB, as well as for the "logical subscriptions" and the distributors. The publisher instances wouldn't need any special install/uninstall logic (since they just start publishing messages using the configured subscription DB, and then stop when they are uninstalled). The subscriber worker nodes wouldn't need anything special on install other than the correct configuration of the distributor endpoint, but would need uninstall logic to make sure they are removed from the distributors list of worker nodes.
Eventually the publisher will fail and the messages will build up in the internal queue. You will have to plan the size of disk you need to handle this based on the message size and how long you want to wait for a DB to come up. From there it is based how much downtime you can handle. You can use DB mirroring or clustering to make the DB have less downtime.
Mirroring and clustering technologies can also help with this. Depends on if you want to do manual or automatic failover and where your doing it(remote sites?).
Clustering MSMQ could help you here. If you want to drop a distributor and move it within a cluster you'd be ok. Another possibility is to expose your distributors via HTTP and load balance them behind either a software or hardware load balancing solution. Behind the load balancer you'd be more free to move things around.
Sounds like you have a good grasp on this one already :)
To your first question, about the high availability of the subscription DB, you can use a cluster for failover. If the DB is down, then the Bus.Publish will throw an exception, yes. It is recommended to keep the subscription DB separate from your applicative DB to avoid having to bring it down when upgrading your app. This doesn't have to be a separate DB server, a separate DB on the same DB server will be fine.
About moving servers, this is usually managed at a DNS level where for a certain period of time you'll have both running, until communication moves over.
On your third question about distributors - don't share a distributor between different publishers or subscribers.
As a rule of thumb, it is recommended to not add/remove subscribers when doing these kinds of maintainenance activities. This usually simplifies things quite a bit.

Failover scenarious for the Service Bus with NServiceBus or MassTransit

I need to build Identity server like Microsoft's http://login.live.com.
To handle failover I will have multiple web servers nodes. The plan is that all database write operations are done by sending messages to the database server. Database will be mirrored or replicated. The idea is that database subscribes to the write operations but that other nodes subscribe also. That way other nodes do not need to read from database and can update their caches.
I am just starting to learn the service bus architecture and what is not clear to me is how to handle failover scenario for the service bus.
Question:
If database server is not available, what will happen with the published messages ?
Will they be stored somewhere and where ?
Do I need additional machine or a cluster to handle failover of the service bus?
I read that SQL Server can be used as a message store but can I use durable MSMQ? I am queuing messages to be able to write them to the database so why would I store them to the DB first just to take them and write them again? OR, I am getting this wrong and DB is only used for the list of subscriptions and not for the Messages?
Whe implementing this kind of architecture, you should look at applying the principles of CQRS - queries (is this user/pwd combo valid) should not be done via the bus; commands (change pwd, forgot pwd) are sent via the bus, not published as events. While internally you will likely use events to keep the command and query sides in sync, this doesn't involve the client.
Queries can be done using simple ado.net against the replicated-read-slaves of your DB - what's known as the persistent view model in CQRS. If you like, you can put some simple WCF in front of that too.
When using MSMQ, all messages are delivered via store-and-forward. That means that they're first stored on the client before being delivered to the server, so if the server is down, the messages sit on the client waiting. For fault-tolerance, you will want your messages to be recoverable (written to disk) - this is the default in NServiceBus but not the default of standard MSMQ (don't know about MassTransit). You don't need the database for this.
In NServiceBus, the bus is not installed on a separate machine so you don't need to deal with its availability independently of the rest of the system. It's only when you look at scaling our your command processing to more nodes that you might consider using the message-based load balancer in NServiceBus (called the distributor) which, for high availability, should be installed on a cluster or fault-tolerant hardware.
This will depend on how it is setup, but in MassTransit you can leave the subscription active so the message will still be delivered to the queue for the DB. When the DB is active again, you can read the messages in the queue.
Each service connected to a service bus, in MassTransit, has an active queue for itself. The messages will be stored there.
I think this is a "it depends"... MassTransit has support for other MQs than MSMQ but is really built around MSMQ. We have no experienced great support for things such as failover from MSMQ. However, everything will continue to run without fault if the subscription service (i.e. the bus) fails - the services already know who to talk to. It's only when a change in a consumer (subscribe or unsubscribe) where this becomes a problem. For me, that's an event that happens almost never.
With MassTransit, we use the DB to store the subscription states but all the messages are stored in MSMQ.
If you'd like more details in one of these responses or have additional questions about MT, you can join us on the mailing list: http://groups.google.com/group/masstransit-discuss.

Should I use MSMQ or SQL Service Broker for transactions?

I've been asked by my team leader to investigate MSMQ as an option for the new version of our product. We use SQL Service Broker in our current version. I've done my fair share of experimentation and Googling to find which product is better for my needs, but I thought I'd ask the best site I know for programming answers.
Some details:
Our client is .NET 1.1 and 2.0 code; this is where the message will be sent from.
The target in a SQL Server 2005 instance. All messages end up being database updates or inserts.
We will send several updates that must be treated as a transaction.
We have to have perfect message recoverability; no messages can be lost.
We have to be asynchronous and able to accept messages even when the target SQL server is down.
Developing our own queuing solution isn't an option; we're a small team.
Things I've discovered so far:
Both MSMQ and SQL Service Broker can do the job.
It appears that service broker is faster for transactional messages.
Service Broker requires a SQL server running somewhere, whereas MSMQ needs any configured Windows machine running somewhere.
MSMQ appears to be better/faster/easier to set up/run in clusters.
Am I missing something? Is there a clear winner here? Any thoughts, experiences, or links would be valued. Thank you!
EDIT: We ended up sticking with service broker because we have a custom DB framework used in some of our client code (we handle transactions better). That code captured SQL for transactions, but not . The client code was also all version 1.1 of .NET, so we'd have to upgrade all the client code. Thanks for your help!
Having just migrated my application from Service Broker to MSMQ, I would have to vote for using MSMQ. There are several factors to take into account, but most of which have to do with how you are using your data and where the processing lives.
If processing is done in the database? Service Broker
If it is just data move? Service Broker
Is processing done in .NET/COM code? MSMQ
Do you need remote distributed transactions (for example, processing on a box different than SQL)? MSMQ
Do you need to be able to send messages while the destination is down? MSMQ
Do you want to use nServiceBus, MassTransit, Rhino-ESB, etc.? MSMQ
Things to consider no matter what you choose
How do you know the health of your queue? Both options handle failover differently. For example Service Broker will disable your queue in certain scenarios which can take down your application.
How will you perform reporting? If you already use SQL Tables in your reports, Service Broker can easily fit in as it's just another dynamic table. If you are already using Performance Monitor MSMQ may fit in nicer. Service Broker does have a lot of performance counters, so don't let this be your only factor.
How do you measure uptime? Is it merely making sure you don't lose transactions, or do you need to respond synchronously? I find that the distributed nature of MSMQ allows for higher uptime because the main queue can go offline and not lose anything. Whereas with Service Broker your database must be online or else you lose out.
Do you already have experience with one of these technologies? Both have a lot of implementation details that can come back and bite you.
No mater what choice you make, how easy is it to switch out the underlying Queueing technology? I recommend having a generic IQueue interface that you write a concrete implementation against. This way the choice you make can easily be changed later on if you find that you made the wrong one. After all, a queue is just a queue and should not lock you into a specific implementation.
I've used MSMQ before and the only item I'd add to your list is a prerequisite check for versioning. I ran into an issue where one site had Win 2000 Server and therefore MSMQ v.2, versus Win 2003 Server and MSMQ v3. All my .NET code targeted v.3 and they aren't compatible... or at least not easily so.
Just a consideration if you go the MSMQ route.
The message size limitation in MSMQ has halted my digging in that direction. I am learning Service Broker for the project.
Do you need to be able to send messages while the destination is down? MSMQ
I don't understand why? SSB can send messages to disconnected destination without any problem. All this messages going to transmission queue and would be delivered when destination stay reachable.