Transform co-circular stadium view into a omnivision (planar) view - camera

Imagine a stadium (e.g. football) with an omnivision (fisheye) camera on top, centered.
You'll get a picture, wich will give you an almost planar view of the field.
Now comes a second camera setup:
You have the same stadium, but with normal (no fisheye) cameras in the top, four corners, pointing on the field.
Now here comes the question:
Is there a transformation between these two camera setups?
I thought of a Hough transformation, to get a planar view of the field with the second camera setup. Am I heading into the right direction or do you have any other ideas to get a planar view?

Ok basically you can create the fisheye effect by just making multiple picuteres and transform them accordingly, stitching is the way to go http://en.wikipedia.org/wiki/Image_stitching
However with a fisheye ontop a football field you will not get a planar view of the field. A planar view you get if you move your camera up the z-Axis till infinity! So it's rather a zoom.
Am I right and you really want to create a minimap from a football field? Then the Hough Transformation is good to recognize the field on the pictures, and calculate the different camera positions, but you still need to transform the pixels in the pictures to become a planar view. To get sth. that looks like a picture.

Related

SceneKit Move Camera

There is a big scene,eg:a house ,I want to use TapGes to move camera to see different rooms. Now I have two questions:
1.I can not get the 3D point from this tapPoint in the scene
Is there any other way?
Here are some examples that may help.
57018359 - this post one tells you how to touch a 2d screen (tap) and translate it to 3d coordinates with you deciding the depth (z), like if you wanted to tap the screen and place an object in 3d space.
57003908 - this post tells you how to select an object with a hitTest (tap). For example, if you showed the front of a house with a door and tap it, then the function would return your door node provided you name the node "door" and took some kind of action when it's touched. Then you could reposition your camera based on that position. You'll want to go iterate through all results because there might be overlapping or plus Z nodes
55129224 - this post gives you quick example of creating a camera class. You can use this to reposition your camera or move it forward and back, etc.

How to detect an image between shapes from camera

I've been searching around the web about how to do this and I know that it needs to be done with OpenCV. The problem is that all the tutorials and examples that I find are for separated shapes detection or template matching.
What I need is a way to detect the contents between 3 circles (which can be a photo or something else). From what I searched, its not to difficult to find the circles with the camera using contours but, how do I extract what is between them? The circles work like a pattern on the image to grab what is "inside the pattern".
Do I need to use the contours of each circle and measure the distance between them to grab my contents? If so, what if the image is a bit rotated/distorted on the camera?
I'm using Xamarin.iOS for this but from what I already saw, I believe I need to go native for this and any Objective C example is welcome too.
EDIT
Imagining that the image captured by the camera is this:
What I want is to match the 3 circles and get the following part of the image as result:
Since the images come from the camera, they can be rotated or scaled up/down.
The warpAffine function will let you map the desired area of the source image to a destination image, performing cropping, rotation and scaling in a single go.
Talking about rotation and scaling seem to indicate that you want to extract a rectangle of a given aspect ratio, hence perform a similarity transform. To define such a transform, three points are too much, two suffice. The construction of the affine matrix is a little tricky.

CCParallax for a moving background

I got a tiled map and I want to make lava lakes. I wish to have some kind of lava texture image on the background looping diagonally slowly. I could make it with four 960x640 images and move all of them diagonally etc. But when I do, a black/white line appears between each...
... and someone suggested me "CCParallax". I have never used it and am not sure if it really can achieve the effect I am seeking.
Also note that as the player moves on the map, the parallax will need to simulate that as well etc.
So my question is, what would you do for this effect? Four looping images or "CCParallax"?
CCParallaxNode is pretty limited because you can't specify endless parallax scrolling without modifying the class. It also doesn't quite fit your use case.
Using four 960x640 images is wasteful. Just to make some lakes underneath the background this is overkill and will negatively affect performance.
The solution depends a bit on how big the lakes are. For example, if these are just 1 or 3x3 tiles in size you could add a textured sprite underneath each lake. If on the other hand your tilemap consists mostly of a few narrow pathways while the rest is lava lakes, then you need a different approach.
You might want to try GL_REPEAT to repeat a single sprite's texture over a defined area. That allows you to use a relatively small texture, for example 64x64, that will be repeated over the rectangle you specified.
You can then modify the sprite's position each frame to scroll the texture. Every time the sprite has moved 64 pixels in horizontal or vertical direction, you subtract 64 pixels (sprite.contentSize.width) from the sprite's position to reset it back to its original state. That means the sprite will never move further than 64 pixels from its initial position in any direction but you still get smooth scrolling.

Which pixels did that drawmesh operation just draw to?

Ok, it's a relatively simple problem, I want to know where, in screen space, a particular mesh was just drawn. I plan on then storing that information in a data store of some kind so that when I interact with something in screen space, I can lookup in the register and find the object, i.e, click on the spaceship drawn on the screen and then select target etc.
I can't find any way of finding out which pixels the mesh was drawn to though...
Alternatively, if I'm missing something obvious regarding what it is that I Want to do, please let me know!
There is no easy way to do that. But you can use another texture as render target and render those meshes with unique colors.
So for example you give #FF0000 to your mesh A and draw it also to your second render target with that color. Now when you select a pixel from 2nd render target and look at that color, if it is #FF0000 you can understand that, the pixel is a part of mesh A. Thus you can easily pick the mesh drawn on a certain pixel when you click one of those pixels.
Why dont you Unproject your screen space coords into 3D space? The only complication I had was the fact that I'd be left with a plane, I could check if a Mesh intersected with that plane but I often had multiple candidates for 'picking'.
Check out Google for DirectX Unproject and there are various articles discussing it. It's sometimes complicated for some to implement but done well it's actually pretty nifty; don't get put off by the people online who say it doesn't work, it does work!

How to render a 2d side-scroller game

I do not really understand the way I'm suppose to render a side-scroller? How do I know what to render when my character move? What kind of positionning should I use for the characters?
I hope my question is clear
The easiest way i've found to do it is have a characterX and characterY variable [integer or float, whatever you want] Then have a cameraX and cameraY variable. Every object in the scene is drawn at theObjectX-cameraX, theObjectY-cameraY...
CameraX/CameraY are tweened by a similar-to-midpoint formula so eventually they'll reach playerx/playery[Cx = (Cx*99+Px)/100] ... yeah
By doing this, every object moves in the stage's space, and is transformed only on render [saving you from headaches]
Use a matrix to define a camera reference frame.
Use space partitioning to split up your level into screens/windows.
Think of your player sprite as any other entity, like enemies and interactive objects.
Now what you want is the abstraction of a camera. You can define a camera as a 3x3 matrix with this layout:
[rotX_X, rotY_X, 0]
[rotX_Y, rotY_Y, 0]
[transX, transY, 1]
The 2x2 sub-matrix in the top-left corner is a rotation matrix. transX and transY defines the translation part, i.e the origin. You also get scaling for free. Just simply scale the rotation part with a scalar, and you have yourself a zoom.
For this to work properly with rotation, your sprites need to be polygons/primitives, say like triangles or quads; you can't just apply the matrix to the positions of the sprites when drawing. If you don't need rotation, just transforming the center point will work fine.
If you want the camera to follow the player, use the player's position as the camera origin. That is the translation vector [transX, transY]
So how do you apply the matrix to entity positions and model vertices? You do a vector-matrix multiplication.
v' = vM^-1, where v' is the new vector, v is the old vector, and M^-1 is the matrix inverse. A camera needs to be an inverse transform because it defines a local coordinate system. An analogy could be: If you are in front of me and I turn left from my reference frame, I am turning your right. This applies to all affine and linear transformations, like scaling, rotation and translation.
Split up your level into sub-parts so you can cull objects and scenery which does not need to be rendered. Your viewport is of a certain size/resolution. Only render scenery and entities which intersect with your viewport. Instead of checking each and every entity against the viewport bounds, assign each entity to a certain sub-screen and test the bounds of the sub-screen against the viewport and camera bounds. If your divide your levels into parts which are the same size as your viewport, then the maximum number of screens visible
at any particular time is:
2 if your camera only scrolls left and right.
4 if your camera scrolls left, right, up and down.
4 if your camera scrolls in any direction, and additionally can be rotated.
A screen-change is an event you can use to activate entities belonging to that screen. That could be enemies, background animations, doors or whatever you like.
If this is your first foray into writing a side-scroller, I'd suggest considering using an already existing game engine (like Construct or Gamemaker or XNA or whatever fits your experience level) so you don't have to worry about what order to render things and how to make it all work. Mess with that a bit--probably exploring a few of them--to get a feel for how they do things then venture out to your own once you've gotten used to it.
Not that there's anything wrong with baptism by fire but it can get pretty overwhelming in my opinion.