how to mock a class's inner static class's private field - testing

i'm test a MR class which has mapper/reducer as inner static classes. the mapper has a private field which consume too much memory to make the test failed, i want to use a mock object for that field, but not sure how to do that, here is my code:
public class Aggregator extends Configured implements Tool {
public static class AggregatorMapper extends Mapper<LongWritable, Text, GeneralKey, Text) {
private LookupService lookupService = null; <--- the object i want to mock
}
}
i tried to mockito but seems no way to mock it. any suggestions? thanks!

You can use reflection to access and modify any property of any object you want. There are several questions on SO that answer this quite well already, for example:
Change private static final field using Java reflection.
Accessing private variables in Java via reflection
Instantiate private inner class with java reflection

Related

Implement class with private constructor in Kotlin

I'd like to write a little stub for a service class. The reason is, that I don't want to push the secret API keys that the service class needs to the CI and I don't want the service class in the CI to run against the external service anyways.
However, the service class is non-abstract and has a private constructor.
When I try to create my stub class like:
open class FirebaseMock: FirebaseMessaging {
// implemented functions go here
}
it says
This type has a constructor, and thus must be initialized here
If I try to initialize it like:
open class FirebaseMock: FirebaseMessaging() {
// implemented functions go here
}
it goes
Cannot access '<init>': it is private in 'FirebaseMessaging'
Which is true:
private FirebaseMessaging(Builder builder) {
...
All I want to do is make my stub class formally a subclass of FirebaseMessaging to use it as placeholder, that mocks the FirebaseMessaging-Functionality when the API keys are not present.
How can I just implement a non-abstract, non-interface class, that has a private constructor nonetheless.
My current solution is a wrapper, which works but is not as nice.
Mockito etc. does not seem like a good solution, since this is still in the productive code.

Creating public instance of private inner class in Kotlin

Why Kotlin doesn't allow creation of public instances of private inner classes unlike Java?
Works in Java:
public class Test {
public A a = new A();
private class A {
}
}
Doesn't work in Kotlin (A class has to be public):
class Test {
var a = A()
// ^
// 'public' property exposes its private type 'A'
private inner class A
}
I would assume because there isn't really a case where it seems like the right thing to do. Any code accessing the property a would not have access to its type. You couldn't assign it to a variable. Test.A myVar declaration outside of the Test class would error out. By not allowing it, the code will be forced to be more consistent. A better question would be why would Java allow it? Other languages, such as swift, have the same restriction.
https://kotlinlang.org/docs/reference/visibility-modifiers.html#classes-and-interfaces
states:
NOTE for Java users: outer class does not see private members of its inner classes in Kotlin.
For your usecase, you can use Nested Classes
In private inner classes you are only able to access members of your outer class.
I think the kotlin team implemented it that way, so that is possible to reduce the scope of members in private inner classes to be accessible only inside the inner class. I think this is not possible in Java.

Testing an injected config with spring without spring test runner

Given the following class:
public class ClassToBeTest{
${property.utility}
private String property;
private Utility utility;
public ClassToBeTested(Utility utility){
this.utility = utility;
}
public void doSomething(){
utility.doSomething(property);
}
}
We want to Mock Utility (we are using Mockito for instance) and verify that utility.doSomething is called passing the property parameter.
We don't really care about the config value (we have other tests for that). But we don't want to open the class with a method like (or passing the property by constructor).
public void setPropertyForTest(String property){
this.property = property;
}
Is there other ways to check that this private property (with no value) is passed to Utility?
Thanks a lot.
If you just want to set the private field, Spring (not Sprint) provides support for that in the spring-test module. See the setField() variants in ReflectionTestUtils.
Regards,
Sam

What is the use of making constructor private in a class?

Why should we make the constructor private in class? As we always need the constructor to be public.
Some reasons where you may need private constructor:
The constructor can only be accessed from static factory method inside the class itself. Singleton can also belong to this category.
A utility class, that only contains static methods.
By providing a private constructor you prevent class instances from being created in any place other than this very class. There are several use cases for providing such constructor.
A. Your class instances are created in a static method. The static method is then declared as public.
class MyClass()
{
private:
MyClass() { }
public:
static MyClass * CreateInstance() { return new MyClass(); }
};
B. Your class is a singleton. This means, not more than one instance of your class exists in the program.
class MyClass()
{
private:
MyClass() { }
public:
MyClass & Instance()
{
static MyClass * aGlobalInst = new MyClass();
return *aGlobalInst;
}
};
C. (Only applies to the upcoming C++0x standard) You have several constructors. Some of them are declared public, others private. For reducing code size, public constructors 'call' private constructors which in turn do all the work. Your public constructors are thus called delegating constructors:
class MyClass
{
public:
MyClass() : MyClass(2010, 1, 1) { }
private:
MyClass(int theYear, int theMonth, int theDay) { /* do real work */ }
};
D. You want to limit object copying (for example, because of using a shared resource):
class MyClass
{
SharedResource * myResource;
private:
MyClass(const MyClass & theOriginal) { }
};
E. Your class is a utility class. That means, it only contains static members. In this case, no object instance must ever be created in the program.
To leave a "back door" that allows another friend class/function to construct an object in a way forbidden to the user. An example that comes to mind would be a container constructing an iterator (C++):
Iterator Container::begin() { return Iterator(this->beginPtr_); }
// Iterator(pointer_type p) constructor is private,
// and Container is a friend of Iterator.
Everyone is stuck on the Singleton thing, wow.
Other things:
Stop people from creating your class on the stack; make private constructors and only hand back pointers via a factory method.
Preventing creating copys of the class (private copy constructor)
This can be very useful for a constructor that contains common code; private constructors can be called by other constructors, using the 'this(...);' notation. By making the common initialization code in a private (or protected) constructor, you are also making explicitly clear that it is called only during construction, which is not so if it were simply a method:
public class Point {
public Point() {
this(0,0); // call common constructor
}
private Point(int x,int y) {
m_x = x; m_y = y;
}
};
There are some instances where you might not want to use a public constructor; for example if you want a singleton class.
If you are writing an assembly used by 3rd parties there could be a number of internal classes that you only want created by your assembly and not to be instantiated by users of your assembly.
This ensures that you (the class with private constructor) control how the contructor is called.
An example : A static factory method on the class could return objects as the factory method choses to allocate them (like a singleton factory for example).
We can also have private constructor,
to enfore the object's creation by a specific class
only(For security reasons).
One way to do it is through having a friend class.
C++ example:
class ClientClass;
class SecureClass
{
private:
SecureClass(); // Constructor is private.
friend class ClientClass; // All methods in
//ClientClass have access to private
// & protected methods of SecureClass.
};
class ClientClass
{
public:
ClientClass();
SecureClass* CreateSecureClass()
{
return (new SecureClass()); // we can access
// constructor of
// SecureClass as
// ClientClass is friend
// of SecureClass.
}
};
Note: Note: Only ClientClass (since it is friend of SecureClass)
can call SecureClass's Constructor.
You shouldn't make the constructor private. Period. Make it protected, so you can extend the class if you need to.
Edit: I'm standing by that, no matter how many downvotes you throw at this.
You're cutting off the potential for future development on the code. If other users or programmers are really determined to extend the class, then they'll just change the constructor to protected in source or bytecode. You will have accomplished nothing besides to make their life a little harder. Include a warning in your constructor's comments, and leave it at that.
If it's a utility class, the simpler, more correct, and more elegant solution is to mark the whole class "static final" to prevent extension. It doesn't do any good to just mark the constructor private; a really determined user may always use reflection to obtain the constructor.
Valid uses:
One good use of a protected
constructor is to force use of static
factory methods, which allow you to
limit instantiation or pool & reuse
expensive resources (DB connections,
native resources).
Singletons (usually not good practice, but sometimes necessary)
when you do not want users to create instances of this class or create class that inherits this class, like the java.lang.math, all the function in this package is static, all the functions can be called without creating an instance of math, so the constructor is announce as static.
If it's private, then you can't call it ==> you can't instantiate the class. Useful in some cases, like a singleton.
There's a discussion and some more examples here.
I saw a question from you addressing the same issue.
Simply if you don't want to allow the others to create instances, then keep the constuctor within a limited scope. The practical application (An example) is the singleton pattern.
Constructor is private for some purpose like when you need to implement singleton or limit the number of object of a class.
For instance in singleton implementation we have to make the constructor private
#include<iostream>
using namespace std;
class singletonClass
{
static int i;
static singletonClass* instance;
public:
static singletonClass* createInstance()
{
if(i==0)
{
instance =new singletonClass;
i=1;
}
return instance;
}
void test()
{
cout<<"successfully created instance";
}
};
int singletonClass::i=0;
singletonClass* singletonClass::instance=NULL;
int main()
{
singletonClass *temp=singletonClass::createInstance();//////return instance!!!
temp->test();
}
Again if you want to limit the object creation upto 10 then use the following
#include<iostream>
using namespace std;
class singletonClass
{
static int i;
static singletonClass* instance;
public:
static singletonClass* createInstance()
{
if(i<10)
{
instance =new singletonClass;
i++;
cout<<"created";
}
return instance;
}
};
int singletonClass::i=0;
singletonClass* singletonClass::instance=NULL;
int main()
{
singletonClass *temp=singletonClass::createInstance();//return an instance
singletonClass *temp1=singletonClass::createInstance();///return another instance
}
Thanks
You can have more than one constructor. C++ provides a default constructor and a default copy constructor if you don't provide one explicitly. Suppose you have a class that can only be constructed using some parameterized constructor. Maybe it initialized variables. If a user then uses this class without that constructor, they can cause no end of problems. A good general rule: If the default implementation is not valid, make both the default and copy constructor private and don't provide an implementation:
class C
{
public:
C(int x);
private:
C();
C(const C &);
};
Use the compiler to prevent users from using the object with the default constructors that are not valid.
Quoting from Effective Java, you can have a class with private constructor to have a utility class that defines constants (as static final fields).
(EDIT: As per the comment this is something which might be applicable only with Java, I'm unaware if this construct is applicable/needed in other OO languages (say C++))
An example as below:
public class Constants {
private Contants():
public static final int ADDRESS_UNIT = 32;
...
}
EDIT_1:
Again, below explanation is applicable in Java : (and referring from the book, Effective Java)
An instantiation of utility class like the one below ,though not harmful, doesn't serve
any purpose since they are not designed to be instantiated.
For example, say there is no private Constructor for class Constants.
A code chunk like below is valid but doesn't better convey intention of
the user of Constants class
unit = (this.length)/new Constants().ADDRESS_UNIT;
in contrast with code like
unit = (this.length)/Constants.ADDRESS_UNIT;
Also I think a private constructor conveys the intention of the designer of the Constants
(say) class better.
Java provides a default parameterless public constructor if no constructor
is provided, and if your intention is to prevent instantiation then a private constructor is
needed.
One cannot mark a top level class static and even a final class can be instantiated.
Utility classes could have private constructors. Users of the classes should not be able to instantiate these classes:
public final class UtilityClass {
private UtilityClass() {}
public static utilityMethod1() {
...
}
}
You may want to prevent a class to be instantiated freely. See the singleton design pattern as an example. In order to guarantee the uniqueness, you can't let anyone create an instance of it :-)
One of the important use is in SingleTon class
class Person
{
private Person()
{
//Its private, Hense cannot be Instantiated
}
public static Person GetInstance()
{
//return new instance of Person
// In here I will be able to access private constructor
}
};
Its also suitable, If your class has only static methods. i.e nobody needs to instantiate your class
It's really one obvious reason: you want to build an object, but it's not practical to do it (in term of interface) within the constructor.
The Factory example is quite obvious, let me demonstrate the Named Constructor idiom.
Say I have a class Complex which can represent a complex number.
class Complex { public: Complex(double,double); .... };
The question is: does the constructor expects the real and imaginary parts, or does it expects the norm and angle (polar coordinates) ?
I can change the interface to make it easier:
class Complex
{
public:
static Complex Regular(double, double = 0.0f);
static Complex Polar(double, double = 0.0f);
private:
Complex(double, double);
}; // class Complex
This is called the Named Constructor idiom: the class can only be built from scratch by explicitly stating which constructor we wish to use.
It's a special case of many construction methods. The Design Patterns provide a good number of ways to build object: Builder, Factory, Abstract Factory, ... and a private constructor will ensure that the user is properly constrained.
In addition to the better-known uses…
To implement the Method Object pattern, which I’d summarize as:
“Private constructor, public static method”
“Object for implementation, function for interface”
If you want to implement a function using an object, and the object is not useful outside of doing a one-off computation (by a method call), then you have a Throwaway Object. You can encapsulate the object creation and method call in a static method, preventing this common anti-pattern:
z = new A(x,y).call();
…replacing it with a (namespaced) function call:
z = A.f(x,y);
The caller never needs to know or care that you’re using an object internally, yielding a cleaner interface, and preventing garbage from the object hanging around or incorrect use of the object.
For example, if you want to break up a computation across methods foo, bar, and zork, for example to share state without having to pass many values in and out of functions, you could implement it as follows:
class A {
public static Z f(x, y) {
A a = new A(x, y);
a.foo();
a.bar();
return a.zork();
}
private A(X x, Y y) { /* ... */ };
}
This Method Object pattern is given in Smalltalk Best Practice Patterns, Kent Beck, pages 34–37, where it is the last step of a refactoring pattern, ending:
Replace the original method with one that creates an instance of the new class, constructed with the parameters and receiver of the original method, and invokes “compute”.
This differs significantly from the other examples here: the class is instantiable (unlike a utility class), but the instances are private (unlike factory methods, including singletons etc.), and can live on the stack, since they never escape.
This pattern is very useful in bottoms-up OOP, where objects are used to simplify low-level implementation, but are not necessarily exposed externally, and contrasts with the top-down OOP that is often presented and begins with high-level interfaces.
Sometimes is useful if you want to control how and when (and how many) instances of an object are created.
Among others, used in patterns:
Singleton pattern
Builder pattern
On use of private constructors could also be to increase readability/maintainability in the face of domain-driven design.
From "Microsoft .NET - Architecing Applications for the Enterprise, 2nd Edition":
var request = new OrderRequest(1234);
Quote, "There are two problems here. First, when looking at the code, one can hardly guess what’s going
on. An instance of OrderRequest is being created, but why and using which data? What’s 1234? This
leads to the second problem: you are violating the ubiquitous language of the bounded context. The
language probably says something like this: a customer can issue an order request and is allowed to
specify a purchase ID. If that’s the case, here’s a better way to get a new OrderRequest instance:"
var request = OrderRequest.CreateForCustomer(1234);
where
private OrderRequest() { ... }
public OrderRequest CreateForCustomer (int customerId)
{
var request = new OrderRequest();
...
return request;
}
I'm not advocating this for every single class, but for the above DDD scenario I think it makes perfect sense to prevent a direct creation of a new object.
If you create a private constructor you need to create the object inside the class
enter code here#include<iostream>
//factory method
using namespace std;
class Test
{
private:
Test(){
cout<<"Object created"<<endl;
}
public:
static Test* m1(){
Test *t = new Test();
return t;
}
void m2(){
cout<<"m2-Test"<<endl;
}
};
int main(){
Test *t = Test::m1();
t->m2();
return 0;
}

Ensuring only factory can create instance

class XFactory {
private XFactory() {}
static void getX() {
if(...)
return new A(new XFactory());
else
return new B(new XFactory());
}
}
class A {
private A() {}
public A(XFactory xf) {}
}
class B {
private B() {}
public A(XFactory xf) {}
}
By this way I can ensure only Factory can create instances of it's belonging Classes.
Is this right approach or there is any other alternative/good approach?
The common approach (in C++) is to make the "belonging classes" constructors private, and have them declare the factory class as friend.
I would make classes A and B friends of XFactory, and keep all their constructors private. Therefore, only XFactory has access to their constructors.
That is, in C++. In Java or C#, I don't see any clean way of enforcing that at compile-time. Your example is far from fool-proof and even a bit confusing, since as long as one has an instance of XFactory, he can pass it to the constructor of A or B and instantiate them directly like that.
If you were up for hacks and could not make your constructors private, you could:
Make your factory a global singleton and to create an object:
Create a random key
Add that key to a private list in the factory object of keys in use
Pass the key to the constructor
Have the constructor retrieve the global factory object and call it to validate the key.
If they key validation fails, scuttle your program (call exit, die, ... whatever is appropriate). Or possibly email a stack tract to an admin. This is the kind of thing that should be caught quickly.
(Do I get hack points?)
Jacob
In Java you can make the constructors private and provide the factory in the form of a public nested class, since nested classes have access to the private members of the class in which they are declared.
public class ExampleClass {
private ExampleClass() {
}
public class NestedFactory {
public ExampleClass createExample() {
return new ExampleClass();
}
}
Anyone who wanted to could create an instance of ExampleClass.NestedFactory and through it instantiate ExampleClasses.
I haven't been able to figure out a way to do this that lets you then inherit from ExampleClass since the Java compiler demands that you specify a constructor for the superclass... so that's a disadvantage.