#property vs just declaring getter and setter - objective-c

Is there any difference in behaviour - either at compile time or at run time - between this code...
// MyClass.h
#interface MyClass : NSObject
#property (nonatomic) SomeType myProperty;
#end
// MyClass.m
#implementation MyClass
#end
... and this code?
// MyClass.h
#interface MyClass : NSObject
-(SomeType)myProperty;
-(void)setMyProperty:(SomeType)myProperty;
#end
// MyClass.m
#implementation MyClass {
SomeType _myProperty;
}
-(SomeType)myProperty {
return _myProperty;
}
-(void)setMyProperty:(SomeType)myProperty {
_myProperty = myProperty;
}
#end
Obviously, the former version is more succinct and readable, but is there any difference in behavior? Do the synthesized getter and setter do anything more sophisticated than my straightforward implementation here? Is the declaration of a property distinguishable by introspection functions from declaration of a getter and setter? Are there any other differences I haven't thought of?

Short answer: No difference. However, some property attributes (copy or atomic) may require different accessor methods.
Long answer: There is a group of introspection functions that allow you to access all #properties declared for given class or protocol:
class_getProperty
class_copyPropertyList
protocol_getProperty
protocol_copyPropertyList
property_getName
property_getAttributes
I don't think any of these functions is useful in production code, because this is basically an implementation detail of the class. Also, there may be a getter/setter exposed in the public interface and a private property hidden in class extension.
Oh, and there's one other difference: Xcode highlights properties and plain getters differently :)

One difference is memory management. You can configure your properties to for example copy the object being set or to use a weak variable. Your code seem to be assuming ARC is active, since you are not releasing the old object and retaining the new object.
Before ARC a typical setter would to something like
-(void)setMyProperty:(SomeType *)myProperty {
if (myProperty == _myProperty) return;
[_myProperty release];
_myProperty = myProperty;
[_myProperty retain];
}

When you say you use ARC, then there is only a small difference. But none that matters.
Your ivar is #protected.
A #property creates an ivar which is #private.
Generally speaking:
So when you subclass, it is possible for your subclass to directly access the ivar you created, but not the one the property created.
BUT since you put your ivar in the #implementation block, the ivar is never seen by the subclass.
Without ARC however and SomeType being not an Objective-C object, there is a big difference. Then your setter/getter wouldn't have retain/release messages included.

Related

Objective-C: Overriding Getter & Setter with Instance Variable (using _) [duplicate]

This question already has answers here:
Error accessing generated ivars when I override setters and getters in Modern Objective-C
(3 answers)
Closed 5 years ago.
I'm learning the Swift programing language and during this I sometimes get in touch with the old Objective-C programming language and its code.
I'm an absolutely beginner and therefore I have some question for better understanding the Setter and Getter.
So, I know that I can create an instance variable through curly braces in the .h file but normally I use properties. These properties are backed by an instance variable and offer automatically a Getter and Setter Method.
Example:
Vehicle .h file:
#interface Vehicle : NSObject
#property int myProperty;
#end
Because I created this property I don't have to declare a Getter and Setter method in the vehicle.m file because they are automatically created by the compiler. So I can create a vehicle-object, set and get the value.
Example
main.m
Vehicle *myvehicle = [[vehicle alloc] init];
[myvehicle myProperty] // myvehicle.myProperty
[myvehicle setMyProperty : 10] // myvehicle.myProperty = 10;
Now I read that it is possible to override the automatically created Getter and Setter method of my created property "myProperty". When declaring my own version of the Getter and Setter I have to declare two methods in the vehicle.h and vehicle.m file. In the vehicle.m file I don't call the object by using the self keyword but by using it's automatically created instance variable (_myProperty). Is it right?
I tried it but alway get an error and I don't know why and what is the point.
Example
Vehicle .h file:
#interface Vehicle : NSObject
#property int myProperty;
-(int) myProperty; //my new Getter method
-(void) setMyProperty: (int)updatedMyProperty; //My new Setter method
#end
vehicle .m file:
#implementation Vehicle
-(int) myProperty {
if (! _myProperty) {
_myProperty = NO;
}
return _myProperty;
}
-(void) setMyProperty: (int)updatedMyProperty {
if (_myProperty == updatedMyProperty) return;
_myProperty = updatedMyProperty;
}
#end
I always get the error "Use of undeclared identifier" and I don't know why. If I understand right I don't have to declare the ivar or its name using #synthesize because the compiler automatically creates the ivar called _myProperty for me. I just have to use #synthesize when I want to change the ivar's name.
I'm not sure why I get stuck and what the point is. Could you explain it?
Thanks in advance!
If you implement all of the accessor methods, the compiler will no longer automatically synthesize the ivar for you. In this case, you have to explicitly do so yourself. E.g.
#synthesize myProperty = _myProperty;
This is only necessary when you have manually implemented all of the accessor methods. The reason is that the compiler is smart enough to know that if you're taking over the accessor methods, you may well not need the ivar, namely that you might be doing something radically different, e.g. computing values from some other property, setting/getting values from some different store, etc. You may want the compiler to synthesize the ivar (in which case you add the above #synthesize statement), but it's equally likely that you've implemented the accessor methods because no backing ivar is needed (in which case you'd omit the above #synthesize statement).
Anyway, staying with your simple example, you get something like:
#interface Vehicle : NSObject
#property (nonatomic) int myProperty; // if you don't write atomic accessor methods, you really should be explicit that this is nonatomic
// as an aside, even if you implement accessor methods, you don't have to declare them here
//
// -(int) myProperty; //my new Getter method
// -(void) setMyProperty: (int)updatedMyProperty; //My new Setter method
#end
And
#implementation Vehicle
// since you implemented all of the accessor properties, you have to manually synthesize the ivar
#synthesize myProperty = _myProperty;
- (int) myProperty {
// do whatever you want here; note, the following doesn't make sense
//
// if (! _myProperty) {
// _myProperty = NO;
// }
return _myProperty;
}
- (void)setMyProperty:(int)updatedMyProperty {
if (_myProperty == updatedMyProperty) return;
_myProperty = updatedMyProperty;
}
#end
Clearly, there's no point in writing these particular accessor methods in the above example, because you're not offering any new functionality, so you wouldn't. You'd just avail yourself of the auto-synthesized accessor methods.
But in those cases that you really need to write your own accessor methods, then you have to explicitly tell the compiler whether you need it to synthesize the ivar for you, too, or not.

Objective-C instance variables?

I'm sure my confusion here is just a result of being stuck in a "Java mindset" and not understanding how Obj-C differs in this case.
In Java, I can declare a variable in a class, like this, and each instance of that class will have it's own:
MyClass {
String myVar;
MyClass() {
// constructor
}
}
In Obj-C I tried to do the same thing by declaring a variable only in the .m file like this:
#import "MyClass.h"
#implementation MyClass
NSString *testVar;
#end
My expectation here was that this variable has a scope limited to this class. So I created a second class (identical):
#import "MySecondClass.h"
#implementation MySecondClass
NSString *testVar;
#end
What I'm seeing (and has me baffled) is that changing the variable in one class, affects the value seen in the other class. In fact, if I set a breakpoint, and then "Jump to Definition" of the variable, it takes me to th
I've created an extremely small Xcode project that demonstrates the problem here.
Change this:
#implementation MyClass
NSString *testVar;
#end
to:
#implementation MyClass {
NSString *testVar;
}
// methods go here
#end
and you'll get what you expected.
As you had it, you are actually creating a global variable. The two global variables were combined into one by the linker which is why both changed when you set one. The variable in curly braces will be a proper (and private) instance variable.
Edit: After being downvoted for no apparent reason, I thought I'd point out the "old" way of doing things, and the new way.
The old way:
SomeClass.h
#interface SomeClass : UIViewController <UITextFieldDelegate> {
UITextField *_textField;
BOOL _someBool;
}
#property (nonatomic, assign) BOOL someBool;
// a few method declarations
#end
SomeClass.m
#implementation SomeClass
#synthesize someBool = _someBool;
// the method implementations
#end
Now the new and improved way with the modern Objective-C compiler:
SomeClass.h
#interface SomeClass : UIViewController
#property (nonatomic, assign) BOOL someBool;
// a few method declarations
#end
SomeClass.m
#interface SomeClass () <UITextFieldDelegate>
#end
#implementation SomeClass {
UITextField *_textField;
}
// the method implementations
#end
The new way has several advantages. The primary advantage is that none of the implementation specific details about the class appear in the .h file. A client has no need to know what delegates the implementation needs. The client has no need to know what ivars I use. Now, if the implementation needs a new ivar or it needs to use a new protocol, the .h file doesn't change. This mean less code gets recompiled. It cleaner and much more efficient. It also makes for easier editing. When I'm editing the .m file and realize I need a new ivar, make the change in the same .m file I'm already editing. No need to swap back and forth.
Also note the implementation no longer needs an ivar or #synthesize for the property.
What you probably want (unless you're using a very old OS and compiler) is to just use property syntax. I.e.:
#interface MyClass : NSObject
// method declarations here ...
#property (copy) NSString* myVar;
// ... or here.
#end
This will do what you intended to do. This will implicitly synthesize an instance variable and a getter/setter pair for this variable. If you manually wanted to create the instance variable (you generally don't need that unless you need your code to work on very old MacOS versions), this is what the above code does under the hood to create the ivar:
#interface MyClass : NSObject
{
NSString* _myVar;
}
// method declarations here.
#end
Note the curly braces, which tell the compiler that this is not just a global variable somewhere in between the methods, but actually an instance variable that belongs to this object.
If you are creating the property only for internal use and don't want clients of your class to mess with it, you can hide this away a little bit in everything but the oldest ObjC compilers by using a class extension which "continues" the class declaration from the header, but can be placed separate from it (so usually in your implementation file). A class extension looks like a category without a name:
#interface MyClass ()
#property (copy) NSString* myVar;
#end
And you can either put your property declaration in there, or even ivar declarations (again wrapped in curly brackets). You can even declare the same property as readonly in the class interface, and then re-declare it identical, but as readwrite in the extension, so that clients only read it, but your code can change it.
Note that, if you didn't use ARC (that is, you've switched off the default of Automatic Reference Counting), you would have to set all your properties to nil in your dealloc method (unless they're set to weak or assign of course).
NB - All the above are #interface sections. Your actual code will go in separate #implementation sections. This is so you can have header files (.h) you can hand off to your class's clients that just contain the portions you intend them to use, and hide away implementation details in the implementation file (.m) where you can change them without having to worry someone might have accidentally used them and you'll break other code.
PS - Note that NSStrings and other objects that you want the immutable flavor of, but that also exist in a mutable flavor (i.e. NSMutableString) should always be copy properties, because that will turn an NSMutableString into an NSString so that nobody on the outside can change the mutable string underneath you. For all other object types, you generally use strong (or retain if not ARC). For your class's owner (e.g. its delegate) you usually use weak (or assign if not ARC).
In Java
MyClass {
String myVar;
MyClass() {
// constructor
}
}
In Objective-c
MyClass.h
#interface MyClass : NSObject{
NSString* str; // Declaration
}
#end
MyClass.m
#implementation MyClass
-(void)initializieTheString
{
//Defination
}
#end
In objective-c, you define the variable as private by doing like so
MyClass.h
#interface MyClass : NSObject{
NSString* _myTestVar; // Declaration
}
#end
and refer to it in the implementation class by doing like so
MyClass.m
#import "MyClass.h";
#implementation MyClass
-(void)initializieTheString
{
_myTestVar= #"foo"; //Initialization
}
#end

Objective-C: Compiler error when overriding a superclass getter and trying to access ivar

I'm working on building an iOS 6 app.
I have a class TDBeam which inherits from superclass TDWeapon.
The superclass TDWeapon declares a #property in the TDWeapon.h file:
#interface TDWeapon : UIView
#property (nonatomic) int damage;
#end
I do not explicitly #synthesize the property, as I'm letting Xcode automatically do so.
In the subclass TDBeam I override the getter in the TDBeam.m file:
#import "TDBeam.h"
#implementation TDBeam
- (int)damage {
return _damage;
}
#end
Xcode auto-completes the getter method name, as expected. But when I attempt to reference the _damage instance variable (inherited from the superclass), I get a compiler error:
Use of undeclared identifier '_damage'
What am I doing wrong here? I've tried explicitly adding #synthesize, and changing the name of the _damage ivar, but the compiler doesn't "see" it or any other ivars from the superclass. I thought ivars were visible and accessible from subclasses?
Synthesized ivars are not visible to subclasses, whether they are explicitly or automatically created: What is the visibility of #synthesized instance variables? Since they are effectively declared in the implementation file, their declaration isn't included in the "translation unit" that includes the subclass.
If you really want to access that ivar directly, you'll have to explicitly declare it (in its default "protected" form) somewhere that the subclass can see it, such as a class extension of the superclass in a private header.
There are a lot of posts on this topic on Stack Overflow, none of which offer simple concrete advice, but this topic sums it up most succinctly, and Josh's answer is the best in any.
What he kinda stops short of saying outright, is, if this is the kind of thing you want to do, don't use #property at all. Declare your regular protected variable in your base class as he says, and write you're own setters and getters if you need them. The ivar will be visible to any subclasses who can then write their own setters/getters.
At least that's where i've landed on the issue, although I'd a total newb to subclassing.
The idea of creating private headers to host your anonymous category and re-#sythesizing your ivars in your subclass just seems wrong on so many levels. I'm also sure I've probably missed some fundamental point somewhere.
Edit
Okay after some lost sleep, and inspired by Stanford's 2013 iTunes U course, here I believe is an example solution to this problem.
MYFoo.h
#import <Foundation/Foundation.h>
#interface MYFoo : NSObject
// Optional, depending on your class
#property (strong, nonatomic, readonly) NSString * myProperty;
- (NSString *)makeValueForNewMyProperty; //override this in your subclass
#end
MYFoo.m
#import "MYFoo.h"
#interface MYFoo ()
#property (strong, nonatomic, readwrite) NSString * myProperty;
#end
#implementation MYFoo
// Base class getter, generic
- (NSDateComponents *)myProperty {
if (!_myProperty) {
_myProperty = [self makeValueForNewMyProperty];
}
return _myProperty;
}
// Replace this method in your subclass with your logic on how to create a new myProperty
- (NSString *)makeValueForNewMyProperty {
// If this is an abstract base class, we'd return nil and/or throw an exception
NSString * newMyProperty = [[NSString alloc]init];
// Do stuff to make the property the way you need it...
return newMyProperty;
}
#end
Then you just replace makeValueForNewMyProperty in your subclass with whatever custom logic you need. Your property is 'protected' in the base class but you have control over how it is created, which is basically what you are trying to achieve in most cases.
If your makeValueForNewMyProperty method requires access to other ivars of the base class, they will, at the very least, have to be be public readonly properties (or just naked ivars).
Not exactly 'over-ridding a getter' but it achieves the same sort of thing, with a little thought. My apologies if, in trying to make the example generic, some elegance and clarity has been lost.

Quick inquiry about ivars scope [duplicate]

If you have a property in your public interface like the following
#interface MyClass : NSObject
#property(strong) NSString *myProp;
#end
And then synthesize it, in effect synthesizing the variable:
#implementation MyClass
#synthesize myProp = _myProp; // or just leave it at the default name..
#end
What is the visibility of the instance variable _myProp? That is, is this considered #public, #protected or #private? I'm guessing since MySubClass could inherit from MyClass then it would also get the properties (naturally), but would it also inherit the instance variable visibility?
What difference does it make if I put the property in a class extension? That would hide the property from subclasses, and I'm guessing the instance variable, too. Is this documented anywhere?
A synthesized ivar is completely invisible to all code that cannot see the #synthesize line (which basically means anything outside of the .m file). It's not #protected, it's not #private, it's simply unknown. With a #private ivar, other code trying to access it will be told that it's private, but with a synthesized ivar, other code trying to access it will be told that the field simply doesn't exist.
As a thought experiment, try imagining a situation where the ivar acted like it was #protected. You make a subclass, and you muck about with the ivar there. Now you go back to the superclass and change #synthesize myProp to #synthesize myProp=foo. What happens in the subclass? When the compiler processes the subclass, it cannot see the #synthesize line, so it would have no idea that you just changed the name of the ivar. In fact, it cannot even tell if the property is backed by an ivar at all, or if it's implemented with custom-written accessor methods. I hope it's obvious why this means that the subclass cannot possibly access the ivar, and neither can any other class.
That said, I'm not quite sure what the compiler does if you write code in the same .m file that tries to access the ivar. I expect it will treat the ivar as #private (since the compiler can, in fact, see that the ivar exists).
Also, none of this has any bearing on the runtime methods. Other classes can still use the obj-c runtime methods to dynamically look up your class's ivar list and muck about with it.
If it is declared in your interface it is virtually public when using the #property declarative. If you want to use #property declaratives and keep them property truly private, you should create a private category in your implementation.
MyClass.h
#interface MyClass : NSObject {
#private
NSObject* foo;
}
#end
MyClass.m
#import "ClassWithPrivateProperty.h"
#interface MyClass ()
#property (nonatomic,retain) NSObject* foo;
#end
#implementation MyClass
#synthesize foo;
// class implementation...
#end
A synthesized variable acts as if declared #private:
#interface Garble : NSObject
#property (copy) NSString * s;
#end
#implementation Garble
#synthesize s;
#end
#interface Bargle : Garble
#end
#implementation Bargle
- (void) useS {
NSLog(#"%#", s); // error: instance variable 's' is private
}
#end
I swear I've seen this in the docs, but I can't find it right now. Will update if I track it down.
You can create a dynamic property and indicate it to the compiler that its instantiation would be at run time.
And then in your subclass write your own getter or synthesize the property.
#interface BaseClass : NSObject
#property (nonatomic, strong) NSString *ThisWillBeSynthesizedInRespectiveSubclasses;
#end
#implementation BaseClass
#dynamic ThisWillBeSynthesizedInRespectiveSubclasses;
#end
In Sub classes
#interface Subclass : BaseClass
#end
#implementation Subclass
#synthesize ThisWillBeSynthesizedInRespectiveSubclasses = _ThisWillBeSynthesizedInRespectiveSubclasses;
#end
or you write your own setter / getter methods.
Hope this helps !
Other classes have access to everything that they #include. In other words, to everything that is inside your header.
If something appears only in your implementation file, other classes (including subclasses) don't know it exists. A synthesized property is like that. Other classes know only about the property (a property means a getter and a setter method) but they don't know anything about the inner implementation of its methods.
Note, that the access specifiers (public/private/protected) in obj-c are only a hint to the compiler that even if something appears in the header file, it can't be accessed. The runtime does not check it in any way.
What happens if you put it into a class extension? Note that a property is a set of two methods. You just hide the methods from every class which includes your class main header but not the class extension header.
We use this for example to declare a property as readonly and in class continuation we declare it as readwrite. Then, we can use the setter only from inside of the class.

What is the visibility of #synthesized instance variables?

If you have a property in your public interface like the following
#interface MyClass : NSObject
#property(strong) NSString *myProp;
#end
And then synthesize it, in effect synthesizing the variable:
#implementation MyClass
#synthesize myProp = _myProp; // or just leave it at the default name..
#end
What is the visibility of the instance variable _myProp? That is, is this considered #public, #protected or #private? I'm guessing since MySubClass could inherit from MyClass then it would also get the properties (naturally), but would it also inherit the instance variable visibility?
What difference does it make if I put the property in a class extension? That would hide the property from subclasses, and I'm guessing the instance variable, too. Is this documented anywhere?
A synthesized ivar is completely invisible to all code that cannot see the #synthesize line (which basically means anything outside of the .m file). It's not #protected, it's not #private, it's simply unknown. With a #private ivar, other code trying to access it will be told that it's private, but with a synthesized ivar, other code trying to access it will be told that the field simply doesn't exist.
As a thought experiment, try imagining a situation where the ivar acted like it was #protected. You make a subclass, and you muck about with the ivar there. Now you go back to the superclass and change #synthesize myProp to #synthesize myProp=foo. What happens in the subclass? When the compiler processes the subclass, it cannot see the #synthesize line, so it would have no idea that you just changed the name of the ivar. In fact, it cannot even tell if the property is backed by an ivar at all, or if it's implemented with custom-written accessor methods. I hope it's obvious why this means that the subclass cannot possibly access the ivar, and neither can any other class.
That said, I'm not quite sure what the compiler does if you write code in the same .m file that tries to access the ivar. I expect it will treat the ivar as #private (since the compiler can, in fact, see that the ivar exists).
Also, none of this has any bearing on the runtime methods. Other classes can still use the obj-c runtime methods to dynamically look up your class's ivar list and muck about with it.
If it is declared in your interface it is virtually public when using the #property declarative. If you want to use #property declaratives and keep them property truly private, you should create a private category in your implementation.
MyClass.h
#interface MyClass : NSObject {
#private
NSObject* foo;
}
#end
MyClass.m
#import "ClassWithPrivateProperty.h"
#interface MyClass ()
#property (nonatomic,retain) NSObject* foo;
#end
#implementation MyClass
#synthesize foo;
// class implementation...
#end
A synthesized variable acts as if declared #private:
#interface Garble : NSObject
#property (copy) NSString * s;
#end
#implementation Garble
#synthesize s;
#end
#interface Bargle : Garble
#end
#implementation Bargle
- (void) useS {
NSLog(#"%#", s); // error: instance variable 's' is private
}
#end
I swear I've seen this in the docs, but I can't find it right now. Will update if I track it down.
You can create a dynamic property and indicate it to the compiler that its instantiation would be at run time.
And then in your subclass write your own getter or synthesize the property.
#interface BaseClass : NSObject
#property (nonatomic, strong) NSString *ThisWillBeSynthesizedInRespectiveSubclasses;
#end
#implementation BaseClass
#dynamic ThisWillBeSynthesizedInRespectiveSubclasses;
#end
In Sub classes
#interface Subclass : BaseClass
#end
#implementation Subclass
#synthesize ThisWillBeSynthesizedInRespectiveSubclasses = _ThisWillBeSynthesizedInRespectiveSubclasses;
#end
or you write your own setter / getter methods.
Hope this helps !
Other classes have access to everything that they #include. In other words, to everything that is inside your header.
If something appears only in your implementation file, other classes (including subclasses) don't know it exists. A synthesized property is like that. Other classes know only about the property (a property means a getter and a setter method) but they don't know anything about the inner implementation of its methods.
Note, that the access specifiers (public/private/protected) in obj-c are only a hint to the compiler that even if something appears in the header file, it can't be accessed. The runtime does not check it in any way.
What happens if you put it into a class extension? Note that a property is a set of two methods. You just hide the methods from every class which includes your class main header but not the class extension header.
We use this for example to declare a property as readonly and in class continuation we declare it as readwrite. Then, we can use the setter only from inside of the class.