Converting a string to a date time in SQL - sql

I'm importing data from a different system and the datetime is stored as string in this format:
20061105084755ES
yyyymmddhhmmss(es/ed) where es is EST and ed is EDT.
I will have to query this table for the last 30 days. I'm using the conversion query:
select convert(
datetime,
left(cdts, 4)+'-'+substring(cdts, 5,2)+'-'substring(cdts, 7,2)+' '+substring(cdts, 9,2) +':'+substring(cdts, 11,2)+':'+substring(cdts, 13,2)
as dt
from tb1
where dt < getdate()-30
I'm looking for a more efficient query that will reduce the time taken. This table has around 90 million records and the query runs forever.

No calculation at runtime is going to speed this query up if you are performing the calculation and then need to filter against the result of the calculation - SQL Server will be forced to perform a table scan. The main problem is that you've chosen to store your dates as a string. For a variety of reasons, this is a terrible decision. Is the string column indexed at least? If so, then this may help get the data only from the last 30 days:
DECLARE #ThirtyDays CHAR(8);
SET #ThirtyDays = CONVERT(CHAR(8),DATEADD(DAY,DATEDIFF(DAY,0,GETDATE()),0)-30,112);
SELECT ...
WHERE cdts >= #ThirtyDays;
If you need to return all the data from all of history except the past 30 days, this isn't going to help either, because unless you are only pulling data from the indexed column, the most efficient approach for retrieving most of the data in the table is to use a clustered index scan. (If you are retrieving a narrow set of columns, it may opt for an index scan, if you have a covering index.) So, your bottleneck in much of these scenarios is not something a formula can fix, but rather the time it takes to actually retrieve a large volume of data, transmit it over the network, and render it on the client.
Also, as an aside, you can't do this:
SELECT a + b AS c FROM dbo.somewhere
WHERE c > 10;
c doesn't exist in dbo.somewhere, it is an expression derived in the SELECT list. The SELECT list is parsed second last (right before ORDER BY), so you can't reference something in the WHERE clause that doesn't exist yet. Typical workarounds are to repeat the expression or use a subquery / CTE.

One potential option is to add a date column to your table and populate that information on load. This way the conversion is all done before you need to query for it.
Then, make sure you have an index on that field which the actual query can take advantage of.

convert(datetime,stuff(stuff(stuff(datevalue, 9, 0, ' '), 12, 0, ':'), 15, 0, ':'))
or
Convert(time,Dateadd(SECOND,
Right(DateValue,2)/1,
Dateadd(MINUTE,
Right(DateValue,4)/100,
Dateadd(hour,
Right(DateValue,6)/10000,
'1900-01-01')))) +
convert(datetime,LEFT(datevalue,8))
Link

Related

Why does using CONVERT(DATETIME, [date], [format]) in WHERE clause take so long?

I'm running the following code on a dataset of 100M to test some things out before I eventually join the entire range (not just the top 10) on another table to make it even smaller.
SELECT TOP 10 *
FROM Table
WHERE CONVERT(datetime, DATE, 112) BETWEEN '2020-07-04 00:00:00' AND '2020-07-04 23:59:59'
The table isn't mine but a client's, so unfortunately I'm not responsible for the data types of the columns. The DATE column, along with the rest of the data, is in varchar. As for the dates in the BETWEEN clause, I just put in a relatively small range for testing.
I have heard that CONVERT shouldn't be in the WHERE clause, but I need to convert it to dates in order to filter. What is the proper way of going about this?
Going to summarise my comments here, as they are "second class citizens" and thus could be removed.
Firstly, the reason your query is slow is because of theCONVERT on the column DATE in your WHERE. Applying functions to a column in your WHERE will almost always make your query non-SARGable (there are some exceptions, but that doesn't make them a good idea). As a result, the entire table must be scanned to find rows that are applicable for your WHERE; it can't use an index to help it.
The real problem, therefore, is that you are storing a date (and time) value in your table as a non-date (and time) datatype; presumably a (n)varchar. This is, in truth, a major design flaw and needs to be fixed. String type values aren't validated to be valid dates, so someone could easily insert the "date" '20210229' or even 20211332'. Fixing the design not only stops this, but also makes your data smaller (a date is 3 bytes in size, a varchar(8) would be 10 bytes), and you could pass strongly typed date and time values to your query and it would be SARGable.
"Fortunately" it appears your data is in the style code 112, which is yyyyMMdd; this at least means that the ordering of the dates is the same as if it were a strongly typed date (and time) data type. This means that the below query will work and return the results you want:
SELECT TOP 10 * --Ideally don't use * and list your columns properly
FROM dbo.[Table]
WHERE [DATE] >= '20210704' AND [DATE] < '20210705'
ORDER BY {Some Column};
you can use like this to get better performance:
SELECT TOP 10 *
FROM Table
WHERE cast(DATE as date) BETWEEN '2020-07-04' AND '2020-07-04' and cast(DATE as time) BETWEEN '00:00:00' AND '23:59:59'
No need to include time portion if you want to search full day.

SQL to group time intervals by arbitrary time period

I need help with this SQL query. I have a big table with the following schema:
time_start (timestamp) - start time of the measurement,
duration (double) - duration of the measurement in seconds,
count_event1 (int) - number of measured events of type 1,
count_event2 (int) - number of measured events of type 2
I am guaranteed that the no rows will overlap - in SQL talk, there are no two rows such that time_start1 < time_start2 AND time_start1 + duration1 > time_start2.
I would like to design an efficient SQL query which would group the measurements by some arbitrary time period (I call it the group_period), for instance 3 hours. I have already tried something like this:
SELECT
ROUND(time_start/group_period,0) AS time_period,
SUM(count_event1) AS sum_event1,
SUM(count_event2) AS sum_event2
FROM measurements
GROUP BY time_period;
However, there seems to be a problem. If there is a measurement with duration greater than the group_period, I would expect such measurement to be grouped into all time period it belongs to, but since the duration is never taken into account, it gets grouped only into the first one. Is there a way to fix this?
Performance is of concern to me because in time, I expect the table size to grow considerably reaching millions, possibly tens or hundreds of millions of rows. Do you have any suggestions for indexes or any other optimizations to improve the speed of this query?
Based on Timekiller's advice, I have come up with the following query:
-- Since there's a problem with declaring variables in PostgreSQL,
-- we will be using aliases for the arguments required by the script.
-- First some configuration:
-- group_period = 3600 -- group by 1 hour (= 3600 seconds)
-- min_time = 1440226301 -- Sat, 22 Aug 2015 06:51:41 GMT
-- max_time = 1450926301 -- Thu, 24 Dec 2015 03:05:01 GMT
-- Calculate the number of started periods in the given interval in advance.
-- period_count = CEIL((max_time - min_time) / group_period)
SET TIME ZONE UTC;
BEGIN TRANSACTION;
-- Create a temporary table and fill it with all time periods.
CREATE TEMP TABLE periods (period_start TIMESTAMP)
ON COMMIT DROP;
INSERT INTO periods (period_start)
SELECT to_timestamp(min_time + group_period * coefficient)
FROM generate_series(0, period_count) as coefficient;
-- Group data by the time periods.
-- Note that we don't require exact overlap of intervals:
-- A. [period_start, period_start + group_period]
-- B. [time_start, time_start + duration]
-- This would yield the best possible result but it would also slow
-- down the query significantly because of the part B.
-- We require only: period_start <= time_start <= period_start + group_period
SELECT
period_start,
COUNT(measurements.*) AS count_measurements,
SUM(count_event1) AS sum_event1,
SUM(count_event2) AS sum_event2
FROM periods
LEFT JOIN measurements
ON time_start BETWEEN period_start AND (period_start + group_period)
GROUP BY period_start;
COMMIT TRANSACTION;
It does exactly what I was going for, so mission accomplished. However, I would still appreciate if anybody could give me some feedback to the performance of this query for the following conditions:
I expect the measurements table to have about 500-800 million rows.
The time_start column is primary key and has unique btree index on it.
I have no guarantees about min_time and max_time. I only know that group period will be chosen so that 500 <= period_count <= 2000.
(This turned out way too large for a comment, so I'll post it as an answer instead).
Adding to my comment on your answer, you probably should go with getting best results first and optimize later if it turns out to be slow.
As for performance, one thing I've learned while working with databases is that you can't really predict performance. Query optimizers in advanced DBMS are complex and tend to behave differently on small and large data sets. You'll have to get your table filled with some large sample data, experiment with indexes and read the results of EXPLAIN, there's no other way.
There are a few things to suggest, though I know Oracle optimizer much better than Postgres, so some of them might not work.
Things will be faster if all fields you're checking against are included in the index. Since you're performing a left join and periods is a base, there's probably no reason to index it, since it'll be included fully either way. duration should be included in the index though, if you're going to go with proper interval overlap - this way, Postgres won't have to fetch the row to calculate the join condition, index will suffice. Chances are it will not even fetch the table rows at all since it needs no other data than what exists in indexes. I think it'll perform better if it's included as the second field to time_start index, at least in Oracle it would, but IIRC Postgres is able to join indexes together, so perhaps a second index would perform better - you'll have to check it with EXPLAIN.
Indexes and math don't mix well. Even if duration is included in the index, there's no guarantee it will be used in (time_start + duration) - though, again, look at EXPLAIN first. If it's not used, try to either create a function-based index (that is, include time_start + duration as a field), or alter the structure of the table a bit, so that time_start + duration is a separate column, and index that column instead.
If you don't really need left join (that is, you're fine with missing empty periods), then use inner join instead - optimizer will likely start with a larger table (measurements) and join periods against it, possibly using hash join instead of nested loops. If you do that, than you should also index your periods table in the same fashion, and perhaps restructure it the same way, so that it contains start and end periods explicitly, as optimizer has even more options when it doesn't have to perform any operations on the columns.
Perhaps the most important, if you have max_time and min_time, USE IT to limit the results of measurements before joining! The smaller your sets, the faster it will work.

How can I query just the month and day of a DATE column?

I have a date of birth DATE column in a customer table with ~13 million rows. I would like to query this table to find all customers who were born on a certain month and day of that month, but any year.
Can I do this by casting the date into a char and doing a subscript query on the cast, or should I create an aditional char column, update it to hold just the month and day, or create three new integer columns to hold month, day and year, respectively?
This will be a very frequently used query criteria...
EDIT:... and the table has ~13 million rows.
Can you please provide an example of your best solution?
If it will be frequently used, consider a 'functional index'. Searching on that term at the Informix 11.70 InfoCentre produces a number of relevant hits.
You can use:
WHERE MONTH(date_col) = 12 AND DAY(date_col) = 25;
You can also play games such as:
WHERE MONTH(date_col) * 100 + DAY(date_col) = 1225;
This might be more suitable for a functional index, but isn't as clear for everyday use. You could easily write a stored procedure too:
Note that in the absence of a functional index, invoking functions on a column in the criterion means that an index is unlikely to be used.
CREATE FUNCTION mmdd(date_val DATE DEFAULT TODAY) RETURNING SMALLINT AS mmdd;
RETURN MONTH(date_val) * 100 + DAY(date_val);
END FUNCTION;
And use it as:
WHERE mmdd(date_col) = 1225;
Depending on how frequently you do this and how fast it needs to run you might think about splitting the date column into day, month and year columns. This would make search faster but cause all sorts of other problems when you want to retrieve a whole date (and also problems in validating that it is a date) - not a great idea.
Assuming speed isn't a probem I would do something like:
select *
FROM Table
WHERE Month(*DateOfBirthColumn*) = *SomeMonth* AND DAY(*DateOfBirthColumn*) = *SomeDay*
I don't have informix in front of me at the moment but I think the syntax is right.

Is SQL DATEDIFF(year, ..., ...) an Expensive Computation?

I'm trying to optimize up some horrendously complicated SQL queries because it takes too long to finish.
In my queries, I have dynamically created SQL statements with lots of the same functions, so I created a temporary table where each function is only called once instead of many, many times - this cut my execution time by 3/4.
So my question is, can I expect to see much of a difference if say, 1,000 datediff computations are narrowed to 100?
EDIT:
The query looks like this :
SELECT DISTINCT M.MID, M.RE FROM #TEMP INNER JOIN M ON #TEMP.MID=M.MID
WHERE ( #TEMP.Property1=1 ) AND
DATEDIFF( year, M.DOB, #date2 ) >= 15 AND DATEDIFF( year, M.DOB, #date2 ) <= 17
where these are being generated dynamically as strings (put together in bits and pieces) and then executed so that various parameters can be changed along each iteration - mainly the last lines, containing all sorts of DATEDIFF queries.
There are about 420 queries like this where these datediffs are being calculated like so. I know that I can pull them all into a temp table easily (1,000 datediffs becomes 50) - but is it worth it, will it make any difference in seconds? I'm hoping for an improvement better than in the tenths of seconds.
It depends on exactly what you are doing to be honest as to the extent of the performance hit.
For example, if you are using DATEDIFF (or indeed any other function) within a WHERE clause, then this will be a cause of poorer performance as it will prevent an index being used on that column.
e.g. basic example, finding all records in 2009
WHERE DATEDIFF(yyyy, DateColumn, '2009-01-01') = 0
would not make good use of an index on DateColumn. Whereas a better solution, providing optimal index usage would be:
WHERE DateColumn >= '2009-01-01' AND DateColumn < '2010-01-01'
I recently blogged about the difference this makes (with performance stats/execution plan comparisons), if you're interested.
That would be costlier than say returning DATEDIFF as a column in the resultset.
I would start by identifying the individual queries that are taking the most time. Check the execution plans to see where the problem lies and tune from there.
Edit:
Based on the example query you've given, here's an approach you could try out to remove the use of DATEDIFF within the WHERE clause. Basic example to find everyone who was 10 years old on a given date - I think the maths is right, but you get the idea anyway! Gave it a quick test, and seems fine. Should be easy enough to adapt to your scenario. If you want to find people between (e.g.) 15 and 17 years old on a given date, then that's also possible with this approach.
-- Assuming #Date2 is set to the date at which you want to calculate someone's age
DECLARE #AgeAtDate INTEGER
SET #AgeAtDate = 10
DECLARE #BornFrom DATETIME
DECLARE #BornUntil DATETIME
SELECT #BornFrom = DATEADD(yyyy, -(#AgeAtDate + 1), #Date2)
SELECT #BornUntil = DATEADD(yyyy, -#AgeAtDate , #Date2)
SELECT DOB
FROM YourTable
WHERE DOB > #BornFrom AND DOB <= #BornUntil
An important note to add, is for age caculates from DOB, this approach is more accurate. Your current implementation only takes the year of birth into account, not the actual day (e.g. someone born on 1st Dec 2009 would show as being 1 year old on 1st Jan 2010 when they are not 1 until 1st Dec 2010).
Hope this helps.
DATEDIFF is quite efficient compared to other methods of handling of datetime values, like strings. (see this SO answer).
In this case, it sounds like you going over and over the same data, which is likely more expensive than using a temp table. For example, statistics will be generated.
One thing you might be able do to improve performance might be to put an index on the temp table on MID.
Check your execution plan to see if it helps (may depend on the number of rows in the temp table).

How Does Dateadd Impact the Performance of a SQL Query?

Say for instance I'm joining on a number table to perform some operation between two dates in a subquery, like so:
select n
,(select avg(col1)
from table1
where timestamp between dateadd(minute, 15*n, #ArbitraryDate)
and dateadd(minute, 15*(n+1), #ArbitraryDate))
from numbers
where n < 1200
Would the query perform better if I, say, constructed the date from concatenating varchars than using the dateadd function?
Keeping data in the datetime format using DATEADD is most likely to be quicker
Check this question: Most efficient way in SQL Server to get date from date+time?
The accepted answer (not me!) demonstrates DATEADD over string conversions. I've seen another too many years ago that showed the same
Be careful with between and dates, take a look at How Does Between Work With Dates In SQL Server?
I once optmized a query to run from over 24 hours to 36 seconds. Just don't use date functions or conversions on the column , see here: Only In A Database Can You Get 1000% + Improvement By Changing A Few Lines Of Code
to see what query performs better, execute both queries and look at execution plans, you can also use statistics io and statistics time to get how many reads and the time it took to execute the queries
I would NOT go with concatenating varchars.
DateAdd will def be better performace than string contatenation, and casting to DATETIME.
As always, you best bet would be to profile the 2 options, and determine the best result, as no DB is specified.
most likely there will be no differenfce one way or another.
I would run this:
SET STATISTICS IO ON;
SET STATISTICS TIME ON;
followed by both variants of your query, so that you see and compare real execution costs.
As long as your predicate calculations do not include references to the columns of the table you're querying, your approach shouldn't matter either way (go for clarity).
If you were to include something from Table1 in the calculation, though, I'd watch out for table scans or covering index scans as it may no longer be sargable.
In any case, check (or post!) the execution plan to confirm.
Why would you ever use a correlated subquery to begin with? That's going to slow you up far more than dateadd. They are like cursors, they work row by row.
Will something like this work?
select n.n , avgcol1
from numbers n
left outer join
(
select avg(col1) as avgcol1, n
from table1
where timestamp between dateadd(minute, 15*n, #ArbitraryDate)
and dateadd(minute, 15*(n+1), #ArbitraryDate)
Group by n
) t
on n.n = t.n
where n < 1200