How does a CPU idle (or run below 100%)? - process

I first learned about how computers work in terms of a primitive single stored program machine.
Now I'm learning about multitasking operating systems, scheduling, context switching, etc. I think I have a fairly good grasp of it all, except for one thing. I have always thought of a CPU as something which is just charging forward non-stop. It always knows where to go next (program counter), and it goes to that instruction, etc, ad infinitum.
Clearly this is not the case since my desktop computer CPU is not always running at 100%. So how does the CPU shut itself off or throttle itself down, and what role does the OS play in this? I'm guessing there's an input on the CPU somewhere which allows it to power down... and the OS can set this if it has nothing to schedule, but the next logical question is how does it start back up again? I'm guessing either one of two things:
It never shuts down completely, just runs at a very low frequency waiting for the scheduler to get busy again
It shuts down completely but is woken up by interrupts
I searched all over for info on this and came up fairly empty-handed. Any insight would be much appreciated.

The answer is that is depends on the hardware, the operating system and the way that the operating system has been configured.
And it could involve either or both of the strategies you proposed.
Another possibility for machines based on the x86 architecture, is that x86 has an HLT instruction that causes the core to stop until it receives an external interrupt. So the "Idle" task could simply execute HLT in a tight loop.

Just go to task manager, performance tab, and watch the cpu usage while you're doing absolutely nothing on your computer. it never stops fluctuating. Having an operating system like windows running, the cpu is going to ALWAYS be functioning, it never completely shuts down.
Having your monitor display an image requires your cpu to process a function allowing it to display anything. etc.
Everything runs through the CPU, just like your brain, it controls everything. nothing would function without it.

Some CPUs do have a 'wait for interrupt' instruction which allows the CPU to stop executing instructions when there is nothing to do, and will not re-awake until there is an interrupt event. This is particularly useful in microcontrollers, where they can sit for long periods of time waiting for something to happen.
Intel = HLT (Halt)
ARM = WFI (Wait for interrupt)
Sometimes a 'busy wait' is also used, where the CPU sits in a little 'idle' loop, checking for things to do. In this case, the CPU is still running instructions, but the operating system is in an idle state. It's not as efficient as using a HLT.
Modern CPUs can also adjust their power usage, and are capable of reducing clock rates, or shutting down parts of the CPU that aren't being used. In this way, power usage during an active idle state can be less than during active processing, even though the core CPU is still running and executing instructions.

If speaking about x86 architecture when an operating system has nothing to do it can use HLT instruction.
HLT instruction stops the CPU till next interrupt.
See http://en.m.wikipedia.org/wiki/HLT for details.
Other architectures have similar instruction to give CPU a rest.

Related

Operating System Basics

I am reading process management,and I have a few doubts-
What is meant by an I/o request,for E.g.-A process is executing and
hence it is in running state,it is in waiting state if it is waiting
for the completion of an I/O request.I am not getting by what is meant by an I/O request,Can you
please give an example to elaborate.
Another doubt is -Lets say that a process is executing and suddenly
an interrupt occurs,then the process stops its execution and will be
put in the ready state,is it possible that some other process began
its execution while the interrupt is also being processed?
Regarding the first question:
A simple way to think about it...
Your computer has lots of components. CPU, Hard Drive, network card, sound card, gpu, etc. All those work in parallel and independent of each other. They are also generally slower than the CPU.
This means that whenever a process makes a call that down the line (on the OS side) ends up communicating with an external device, there is no point for the OS to be stuck waiting for the result since the time it takes for that operation to complete is probably an eternity (in the CPU view point of things).
So, the OS fires up whatever communication the process requested (call it IO request), flags the process as waiting for IO, and switches execution to another process so the CPU can do something useful instead of sitting around blocked waiting for the IO request to complete.
When the external device finishes whatever operation was requested, it generates an interrupt, so the OS is informed the work is done, and it can then flag the blocked process as ready again.
This is all a very simplified view of course, but that's the main idea. It allows the CPU to do useful work instead of waiting for IO requests to complete.
Regarding the second question:
It's tricky, even for single CPU machines, and depends on how the OS handles interrupts.
For code simplicity, a simple OS might for example, whenever an interrupt happens process the interrupt in one go, then resume whatever process it decides it's appropriate whenever the interrupt handling is done. So in this case, no other process would run until the interrupt handling is complete.
In practice, things get a bit more complicated for performance and latency reasons.
If you think about an interrupt lifetime as just another task for the CPU (From when the interrupt starts to the point the OS considers that handling complete), you can effectively code the interrupt handling to run in parallel with other things.
Just think of the interrupt as notification for the OS to start another task (that interrupt handling). It grabs whatever context it needs at the point the interrupt started, then keeps processing that task in parallel with other processes.
I/O request generally just means request to do either Input , Output or both. The exact meaning varies depending on your context like HTTP, Networks, Console Ops, or may be some process in the CPU.
A process is waiting for IO: Say for example you were writing a program in C to accept user's name on command line, and then would like to print 'Hello User' back. Your code will go into waiting state until user enters their name and hits Enter. This is a higher level example, but even on a very low level process executing in your computer's processor works on same basic principle
Can Processor work on other processes when current is interrupted and waiting on something? Yes! You better hope it does. Thats what scheduling algorithms and stacks are for. However the real answer depending on what Architecture you are on, does it support parallel or serial processing etc.

Inter Processor Interrupt usage

An educational principle is: There is not such a thing as a stupid question. The basic idea behind this is that people learn by asking.
I was asked to: "Can you show and explain at a programming level what bad will happen if every task could execute all instructions."
I did give the code
main(){
_asm_("cli;");
while(1);
}
and explained it (the system frozen for good- UP)
Then I was asked: "Is it possible give an example so that system do not freeze even this clearing interrupts is done?"
I did modify the previous example:
I did give the code
main(){
_asm_("cli;");
i=i/0;
while(1);
}
and explained it.
Trivially: If we have demand paging i=i/0 causes first a page fault (the data page not present) and an other task can be scheduled to run interrupts enabled during the disk read and later on divide by zero will throw this task away for good.
But the answers were based on UP. What about SMP? I must tell that answers are incomplete.
It still easy enough to construct:
int i;
main(){
for(i=0;i<100;i++)// Suppose we have less than 100 CPUs
if(fork())
{ sleep(5);//The generating task has (most probable) time to do all forks
_asm_("cli;");
while(1);
}
}
which will disable interrupts for all CPUs, because every CPU gets a poisonous task to run.
Even so far a stupid question did reveal many things good to learn to a beginner: privileged instructions, paging, fault handling, scheduling during DMA, fork.....
But a minor doubt remains (shame on me) about the first program running on a SMP.
Will one CPU be out permanently or not?
Other CPUs continue and can send re_schedule() IPI message.
What happens then?
It can be easy to speculate that the frozen CPU do not wake up, because interrupts are disabled.
But to be perfectly sure must know more.
My question was:
Is the Inter Processor Interrupt (IPI) maskable or non-maskable?
I mean in the most common "popular" implementations?
Excuse my stupid question. It can't be very difficult to find an answer. I will seek it.
I mean interrupt pin number (telling maskable, I guess).
My own answer - correct?
I studied the issue, because nobody else did like it, coming to following thoughts:
With important real-time applications we have had for a long time a watchdog timer (HW interrupting cpu to answer somehow "I am alive").
For example we have main control computer and standby computer taking care of the system if the main computer is down.
What about Linux?
What kind watchdog- have we one?
We can compile the Linux kernel with or without watchdog.
What the Linux watchdog does?
On many(!) x86/x86-64 type hardware there is a feature that enables us to generate 'watchdog NMI interrupts'.
It's even possible to disable the NMI watchdog in run-time by writing "0" to /proc/sys/kernel/nmi_watchdog.
If any CPU in the system does not execute the period local timer interrupt for more than 5 seconds, APIC tries to fix the situation by a non-maskable interrupt (cpu executes the handler, and kills the process)!
(SCC Linux is an different case as to NMI.)
My answers (in the original question) were based on the system without watchdog!
It is problematic to answer at a general level and give examples based on some fixed system. The answers can be correct or not depending the cpu and configuration and settings.
Anyway, talking about NMI did make some sense? Did it?
If the CPU didn't restrict access to some instructions, it would be too easy to accidentally or deliberately cause a catastrophe.
push $0
push $0
lidt (%esp)
int $42
This code sequence will reset an x86 processor. Here's why:
The code loads the IDTR register with an interrupt descriptor table (IDT) at linear address 0, with a size of one byte.
Raises interrupt 42, which can't work because it is beyond the 1-byte limit of the IDT.
The CPU tries to raise a general protection fault, interrupt 13. This fails too, because interrupt 13 is beyond the one byte limit.
The CPU tries to raise a double fault exception, interrupt 8. This fails too, interrupt 8 is beyond the limit of the IDT.
This is known as a triple-fault. The CPU does a shutdown bus cycle to tell the motherboard that it is now ignoring everything and stopping execution. The motherboard asserts reset, rebooting the machine.
This is actually negligible compared to what code could do. A code sequence could easily hijack the machine altogether and start destroying all of the data on the hard drive, it could send all of your files to a malicious server on the internet, it could change your password, enable remote access, connect out to a malicious server and grant an attacker unlimited shell access. There's no limit on what a program could do.
Processors have privileged instructions for two reasons, the primary purpose is to protect the operating system from buggy programs that might accidentally do something to bring down or hijack the whole machine. The secondary purpose is to restrict deliberately malicious programs from doing the same.

Which takes longer time? Switching between the user & kernel modes or switching between two processes?

Which takes longer time?
Switching between the user & kernel modes (or) switching between two processes?
Please explain the reason too.
EDIT : I do know that whenever there is a context switch, it takes some time for the dispatcher to save the status of the previous process in its PCB, and then reload the next process from its corresponding PCB. And for switching between the user and the kernel modes, I know that the mode bit has to be changed. Isn't it all, or is there more to it?
Switching between processes (given you actually switch, not run them in parallel) by an order of oh-my-god.
Trapping from userspace to kernelspace used to be done with a processor interrupt earlier. Around 2005 (don't remember the kernel version), and after a discussion on the mailing list where someone found that trapping was slower (in absolute measures!) on a high-end xeon processor than on an earlier Pentium II or III (again, my memory), they implemented it with a new cpu instruction sysenter (which had actually existed since Pentium Pro I think). This is done in the Virtual Dynamic Shared Object (vdso) page in each process (cat /proc/pid/maps to find it) IIRC.
So, nowadays, a kernel trap is basically just a couple of cpu instructions, hence rather few cycles, compared to tenths or hundreds of thousands when using an interrupt (which is really slow on modern CPU's).
A context switch between processes is heavy. It means storing all processor state (registers, etc) to RAM (at a magic memory location in the user process space actually, guess where!), in practice dirtying all cached memory in the cpu, and reading back the process state for the new process. It will (likely) have nothing still in the cpu cache from last time it ran, so each memory read will be a cache miss, and needed to be read from RAM. This is rather slow. When I was at the university, I "invented" (well, I did come up with the idea, knowing that there is plenty of dye in a CPU, but not enough cool if it's constantly powered) a cache that was infinite size although unpowered when unused (only used on context switches i.e.) in the CPU, and implemented this in Simics. Implemented support for this magic cache I called CARD (Context-switch Active, Run-time Drowsy) in Linux, and benchmarked rather heavily. I found that it could speed-up a Linux machine with lots of heavy processes sharing the same core with about 5%. This was at relatively short (low-latency) process time slices, though.
Anyway. A context switch is still pretty heavy, while a kernel trap is basically free.
Answer to at which memory location in user-space, for each process:
At address zero. Yep, the null pointer! You can't read from this entire page from user-space anyway :) This was back in 2005, but it's probably the same now unless the CPU state information has grown larger than a page size, in which case they might have changed the implementation.

OS Concepts Terminology

I'm doing some fill in the blanks from a sample exam for my class and I was hoping you could double check my terminology.
The various scheduling queues used by the operating system would consist of lists of processes.
Interrupt handling is the technique of periodically checking to see if a condition (such as completion of some requested I/O operation) has been met.
When the CPU is in kernel mode, a running program has access to a restricted set of CPU functionality.
The job of the CPU scheduler is to select a process on the ready queue and change its state.
The CPU normally supports a vector of interrupts so the OS can respond appropriately when some event of interest occurs in the hardware.
Using traps, a device controller can use idle time on the bus to read from or write to main memory.
During a context switch, the state of one process is copied from the CPU and saved, and the state of a different process is restored.
An operating system consists of a kernel and a collection of application programs that run as user processes and either provide OS services to the user or work in the background to keep the computer running smooth.
There are so many terms from our chapters, I am not quite sure if I am using the correct ones.
My thoughts:
1. Processes and/or threads. Jobs and tasks aren't unheard of either. There can be other things. E.g. in MS Windows there are also Deferred Procedure Calls (DPCs) that can be queued.
2. This must be polling.
4. Why CPU scheduler? Why not just scheduler?
6. I'm not sure about traps in the hardware/bus context.

How To Simulate Lower CPU Processor Machines For Browser Testing

We have some users which are using lower-CPU powered machines and they're encountering slow response times using our web application. Is there any way for me to do testing so that I can simulate lower CPU rates?
For example, I have 2.3 Ghz computing power, can I lower it to 1.6 Ghz or lower so that I may be able to test it?
BTW, our customers are using Windows. I have to simulate low computing power on Internet Explorer as browser.
Most new CPUs multiplier can easily be lowered (Intel: Speedstep, AMD: PowerNow!). This is used to save power. With RMclock you can manually adjust your multiplier and thus lower your frequency and make your pc slower. I use this tool myself so I can tell you that it works.
http://cpu.rightmark.org/products/rmclock.shtml
The virtual machine Bochs(pronounced boxes) allows you to set a instructions per second directive. It's probably the slowest emulator out there as it is though...
Create some virtual machines.
You can use VirtualPC or VirtualBox both are free.
I would recommend to start something on the background which eats up all your processor cycles.
A program which finds primenumbers or something similar.
Another slight option in addition to those above is to boot windows in a lower resource config. Go to the start menu,, select run and type MSCONFIG. You can go to the boot tab, click on advanced options and limit the memory and number of of processsors. It's not as robust as the above, but it does give you another option.
Lowering the CPU clock doesn't always give expected results.
Newer CPUs feature architecture improvements which make them more efficient on an equvialent clock basis than older chips. Incidentally, because of this virtual machines are a bad way of testing performance for "older" tech as well.
Your best bet is to simply buy a couple of older machines. Using similar RAM (types and amounts), processor, motherboard chipsets, hard drives, and video cards. All of which feed into the total performance of the machine itself.
I bring the other components up because changing just one of them can have an impact on even browser performance. A prime example is memory. If your clients are constrained to something like 512MB of RAM, the machines could be performing a lot of hard drive access for VM swaps, even for just running the browser. In this situation downgrading the clock speed on your processor while still retaining your 2GB (assuming) of RAM would still not perform anywhere near the same even if everything else was equal.
Isak Savo'sanswer works, but can be a bit finicky, as the modern tpl is going to try and limit cpu load as much as possible. When I tested it out, It was hard (though possible with some testing) to consistently get the types of cpu usages I wanted.
Then I remembered, http://www.cpukiller.com/, which does this already. Highly recommended. As an aside, I found this util from playing old 90s games on modern machines, back when frame rate was pegged to cpu clock time, making playing them on modern computers way too fast. Great utility.
Another big difference between high-performance and low-performance CPUs is the number of cores available. This can realistically differ by a factor of 4, way more than the difference in clock frequency you're likely to encounter.
You can solve this by setting the thread affinity. Even IE6 will use 13 threads just to show google.com. That means it will benefit from a multi-core CPU. But if you set the thread affinity to one core only, all 13 IE threads will have to share that one core.
I understand that this question is pretty old, but here are some receipts I personally use (not only for Web development):
BES. I'm getting some weird results while using it.
Go to Control Panel\All Control Panel Items\Power Options\Edit Plan Settings\Change Advanced Power Settings, then go to the "Processor" section and set it's maximum state to 5% (or something else). It works only if your processor supports dynamic multiplier change and ACPI driver is installed correctly.
Run Task Manager and set processor affinity to a single core (or whatever number of cores you want) for your browser's (or any other's) process. Not a best practice for browsers, because JavaScript implementations are usually single-threaded, but, as far as I see, modern browsers actually DO use multiple cores.
There are a few different methods to accomplish this.
If you're using VirtualBox, go into the Settings for the VM you want to slow the CPU speed for. Go to System > Processor, then set the Execution Cap. The percentage controls how slow it will go: lower values are slower relative to the regular speed. In practice, I've noticed the results to be choppy, although it does technically work.
It is also possible to set the CPU speed for the whole system. In the Windows 10 Settings app, go to System > Power & Sleep. Then click Additional Power Settings on the right hand side. Go to Change Plan Settings for the currently selected plan, then click Change Advanced Power Plan Settings. Scroll down to Processor Power Management and set the Maximum Processor State. Again, this is a percentage. Although this does work, I find that in practice, it doesn't have a big impact even when the percentage is set very low.
If you're dealing with a videogame that uses DirectX or OpenGL and doesn't have a framerate cap, another common method is to force Vsync on in your graphics driver settings. This will usually slow the rendering to about 60 FPS which may be enough to play at a reasonable rate. However, it will only work for applications using 3D hardware rendering specifically.
Finally: if you'd rather not use a VM, and don't want to change a system global setting, but would rather simulate an old CPU for one specific process only, then I have my own program to do that called Old CPU Simulator.
The main brain of the operation is a command line tool written in C++, but there is also a GUI wrapper written in C#. The GUI requires .NET Framework 4.0. The default settings should be fine in most cases - just select the CPU you'd like to simulate under Target Rate, then hit New and browse for the program you'd like to run.
https://github.com/tomysshadow/OldCPUSimulator (click the Releases tab on the right for binaries.)
The concept is to suspend and resume the process at a precise rate, and because it happens so quickly the process will appear to just be running slowly. For example, by suspending a process for 3 milliseconds, then resuming it for 1 millisecond, it will appear to be running at 25% speed. By controlling the ratio of time suspended vs. time resumed, it is possible to simulate different speeds. This is completely API agnostic (it doesn't hook DirectX, OpenGL, etc. it'll work with a command line program if you want.)
Old CPU Simulator does not ask for a percentage, but rather, the clock speed to simulate (which it calls the Target Rate.) It then automatically determines, based on your CPU's real clock speed, the percentage to use. Although clock speed is not the only factor that has improved computer performance over time (there are also SSDs, faster GPUs, more RAM, multithreaded performance, etc.) it's a good enough approximation to get fairly consistent results across machines given the same Target Rate. It also supports other options that may help with consistency, such as setting the process affinity to one.
It implements three different methods of suspending and resuming a process and will use the best available: NtSuspendProcess, NtQuerySystemInformation, or Toolhelp Snapshots. It also uses timeBeginPeriod and timeEndPeriod to achieve high precision timing without busy looping. Note that this is not an emulator; the binary still runs natively. If you like, you can view the source to see how it's implemented - it's not a large project. On my machine, Old CPU Simulator uses less than 1% CPU and less than 1 MB of memory, so the program itself is quite efficient (unlike running intensive programs to intentionally slow the CPU.)