I have an array of arrays containing points that define polygons. These polygons together form another, final shape. What I want, is to only get the outline points of the final shape in the correct order, so I can draw them on screen.
I have tried removing duplicate points (where two shapes meet, they have exact same points) and sorting them around their centroid and then connecting those, but that gives an approximate outline with many deviations (as of course, connecting the points in a clockwise order is not necessarily correct).
So basically, what I want to do is turn this into this.
Related
I have two dataframes. One contains a column of Polygons, taken from an image of polygon shapes. Each polygon has a set of coordinates. This dataframe also has a "segment-id" column. I have another dataframe, containing a column of Points, also with coordinates. These Points represent pixels from the same image of Polygon shapes, and therefore have the same coordinate system. I want to give every Point the "segment-id" of the Polygon which contains it. Every Polygon contains at least one Point.
Currently, I achieve this by using a nested for loop:
for i, row in enumerate(point_df.itertuples(), 0):
point = pixel_df.at[i, 'geometry']
for j in range(len(polygon_df)):
polygon = polygon_df.iat[j, 0]
if polygon.contains(point):
pixel_df.at[i, 'segment_id'] = polygon_df.at[j, 'segment_id']
else:
pass
This is extremely slow. For 100 Points, it takes around 10 seconds. I need a faster way of doing this. I have tried using apply but it is still super slow.
Hope someone can help me out, thanks very much.
For fast "is point inside polygon":
Preparation: In the code that obtains the data describing the polygons; using all the vertices, find the minimum and maximum y-coord, and minimum and maximum x-coord; and store that with the polygon's data.
1) Using the point's coords and the polygon's "minimum and maximum x and y" (pre-determined during preparation); do a "bounding box" test. This is just a fast way to find out if the point is definitely not inside the polygon (so you can skip the more expensive steps most of the time).
2) Set a "yes/no" flag to "no"
3) For each edge in the polygon; determine if a horizontal line passing through the point would intersect with the edge, and if it does determine the x-coord of the intersection. If the x-coord of the intersection is less than the point's x-coord, toggle (with NOT) the "yes/no" flag. Ignore "horizontal line passes through a vertex" during this step.
4) For each vertex, compare its y-coord with the point's y-coord. If they're the same you need to look at both edges coming from that vertex to determine if the edge's vertices are in the same y direction. If the edge's vertices are in the same y direction (if the edges form a 'V' shape or upside-down 'V' shape) ignore the vertex. Otherwise (if the edges form a '<' or '>' shape), if the vertex's x-coord is less than the point's x-coord, toggle the "yes/no" flag.
After all this is done; that "yes/no" flag will tell you if the point was in the polygon.
In my meshing application I will have to specify fix points within a domain. The idea is that, the fix points must also be the element points after the domain is being meshed.
Furthermore, the elements around the fix points should be more dense. The general concept is that for the fix points, there should exist a radius r around those points, such that the mesh size inside r is of different sizes than outside of the r. The mesh sizes inside and outside of the r should be specifiable.
Are these two things doable in CGAL 2D Mesh algorithm?
Using your wording, all the input point of the initial constrained Delaunay triangulation will be fix points, because the 2D mesh generator only insert new points in the triangulation: it never removes any point.
As for the density, you can copy, paste, and modify a criteria class, such as CGAL::Delaunay_mesh_size_criteria_2<CDT> so that the local size upper bound is smaller around the fix points.
Now, the difficulty is how to implement that new size policy. Your criteria class could store a const reference to another Delaunay_triangulation_2, that contains only the fixed points you want. Then, for each triangle query, you can call nearest_vertex and then actually check if the distance between the query point is smaller that the radius bound of your circles. For a triangle, you can either verify that for only its barycenter, or for all three points of the triangle. Then, according to the result of that/those query(s), you can modify the size bound, in the code of your copy of CGAL::Delaunay_mesh_size_criteria_2<CDT>.
Yes, no points will be removed from the triangulation by the mesher.
Note however that if you insert points too close to a constraint this will induce a refinement of the constraint while it is not Gabriel.
I need to draw an enclosing polygon of a group of rectangles that are placed next to each other.
Let's think of text fields that share at least one edge (or part of it) with at least one of the other rectangles.
I can get the rectangles points coordinates, and so I basically have any data I need about them.
Can you think of a simple algorithm / procedure to draw a polygon (connected straight paths) around these objects.
Here's a demonstration of different potential cases (A, B, C, etc...). In example A I also drew a blue polygon which is the path that I need to draw, outlining the group of rectangles.
I've read here about convex hull and stuff like that but really, this looks like a far simpler problem.
One (beginning of) solution I thought of was that the points I actually need to draw through are only ones that are not shared by any pair of rectangles, meaning points that are vertices of more than one rectangle are redundant. What I couldn't find out was the order by which I need to draw lines from one to the next.
I currently work on objective c, but any other language or algo would be appreciated, including pseudo.
Thanks!
IMHO it should be like this. Make a list of edged and see if some are overlaying: This should be simple if the rectangles are aligned with the x,y axis. You just find the edges that have the vertexes on the same x or y and the other coordinates need to be in between. After this the remaining edges should form the outline.
Another method to find common edges is to break all rectangles along each x and y axis where you have vertices. This should look as if you are growing all lines to infinity. After this all common edges will have common vertices and can be eliminated.
You have two rows, and three different y-values. Let's say y0 is the top of the thing, y2 is the bottom end, and y1 marks the middle between both rows.
Each row has a maximum and a minimum x-value, let's say the top-row goes from x0_min to x0_max, and the bottom row from x2_min to x2_max. Given those values you just draw around the thing:
(x0_min,y0)->
(x0_max,y0)->
(x0_max,y1)->
(x2_max,y1)->
(x2_max,y2)->
(x2_min,y2)->
(x2_min,y1)->
(x0_min,y1)->
(x0_min,y0)
I have a number of 2D (possibly intersecting) polygons which I rendered using OpenGL ES on the screen. All the polygons are completely contained within the screen. What is the most timely way to find the percentage area of the union of these polygons to the total screen area? Timeliness is required as I have a requirement for the coverage area to be immediately updated whenever a polygon is shifted.
Currently, I am representing each polygon as a 2D array of booleans. Using a point-in-polygon function (from a geometry package), I sample each point (x,y) on the screen to check if it belongs to the polygon, and set polygon[x][y] = true if so, false otherwise.
After doing that to all the polygons in the screen, I loop through all the screen pixels again, and check through each polygon array, counting that pixel as "covered" if any polygon has its polygon[x][y] value set to true.
This works, but the performance is not ideal as the number of polygons increases. Are there any better ways to do this, using open-source libraries if possible? I thought of:
(1) Unioning the polygons to get one or more non-overlapping polygons. Then compute the area of each polygon using the standard area-of-polygon formula. Then sum them up. Not sure how to get this to work?
(2) Using OpenGL somehow. Imagine that I am rendering all these polygons with a single color. Is it possible to count the number of pixels on the screen buffer with that certain color? This would really sound like a nice solution.
Any efficient means for doing this?
If you know background color and all polygons have other colors, you can read all pixels from framebuffer glReadPixels() and simply count all pixels that have color different than background.
If first condition is not met you may consider creating custom framebuffer and render all polygons with the same color (For example (0.0, 0.0, 0.0) for backgruond and (1.0, 0.0, 0.0) for polygons). Next, read resulting framebuffer and calculate mean of red color across the whole screen.
If you want to get non-overlapping polygons, you can run a line intersection algorithm. A simple variant is the Bentley–Ottmann algorithm, but even faster algorithms of O(n log n + k) (with n vertices and k crossings) are possible.
Given a line intersection, you can unify two polygons by constructing a vertex connecting both polygons on the intersection point. Then you follow the vertices of one of the polygons inside of the other polygon (you can determine the direction you have to go in using your point-in-polygon function), and remove all vertices and edges until you reach the outside of the polygon. There you repair the polygon by creating a new vertex on the second intersection of the two polygons.
Unless I'm mistaken, this can run in O(n log n + k * p) time where p is the maximum overlap of the polygons.
After unification of the polygons you can use an ordinary area function to calculate the exact area of the polygons.
I think that attempt to calculate area of polygons with number of pixels is too complicated and sometimes inaccurate. You can see something similar in stackoverflow answer about calculation the area covered by a polygon and if you construct regular polygons see area of a regular polygon ,
Suppose you have a list of 2D points with an orientation assigned to them. Let the set S be defined as:
S={ (x,y,a) | (x,y) is a 2D point, a is an orientation (an angle) }.
Given an element s of S, we will indicate with s_p the point part and with s_a the angle part. I would like to know if there exist an efficient data structure such that, given a query point q, is able to return all the elements s in S such that
(dist(q_p, s_p) < threshold_1) AND (angle_diff(q_a, s_a) < threshold_2) (1)
where dist(p1,p2), with p1,p2 2D points, is the euclidean distance, and angle_diff(a1,a2), with a1,a2 angles, is the difference between angles (taken to be the smallest one). The data structure should be efficient w.r.t. insertion/deletion of elements and the search as defined above. The number of vectors can grow up to 10.000 and more, but take this with a grain of salt.
Now suppose to change the above requirement: instead of using the condition (1), let's request all the elements of S such that, given a distance function d, we want all elements of S such that d(q,s) < threshold. If i remember well, this last setup is called range-search. I don't know if the first case can be transformed in the second.
For the distance search I believe the accepted best method is a Binary Space Partition tree. This can be stored as a series of bits. Each two bits (for a 2D tree) or three bits (for a 3D tree) subdivides the space one more level, increasing resolution.
Using a BSP, locating a set of objects to compare distances with is pretty easy. Just find the smallest set of squares or cubes which contain the edges of your distance box.
For the angle, I don't know of anything. I suppose that you could store each object in a second list or tree sorted by its angle. Then you would find every object at the proper distance using the BSP, every object at the proper angles using the angle tree, then do a set intersection.
You have effectively described a "three dimensional cyclindrical space", ie. a space that is locally three dimensional but where one dimension is topologically cyclic. In other words, it is locally flat and may be modeled as the boundary of a four-dimensional object C4 in (x, y, z, w) defined by
z^2 + w^2 = 1
where
a = arctan(w/z)
With this model, the space defined by your constraints is a 2-dimensional cylinder wrapped "lengthwise" around a cross section wedge, where the wedge wraps around the 4-d cylindrical space with an angle of 2 * threshold_2. This can be modeled using a "modified k-d tree" approach (modified 3-d tree), where the data structure is not a tree but actually a graph (it has cycles). You can still partition this space into cells with hyperplane separation, but traveling along the curve defined by (z, w) in the positive direction may encounter a point encountered in the negative direction. The tree should be modified to actually lead to these nodes from both directions, so that the edges are bidirectional (in the z-w curve direction - the others are obviously still unidirectional).
These cycles do not change the effectiveness of the data structure in locating nearby points or allowing your constraint search. In fact, for the most part, those algorithms are only slightly modified (the simplest approach being to hold a visited node data structure to prevent cycles in the search - you test the next neighbors about to be searched).
This will work especially well for your criteria, since the region you define is effectively bounded by these axis-defined hyperplane-bounded cells of a k-d tree, and so the search termination will leave a region on average populated around pi / 4 percent of the area.