What are the downsides of convolution by FFT compared to realspace convolution? - numpy

So I am aware that a convolution by FFT has a lower computational complexity than a convolution in real space. But what are the downsides of an FFT convolution?
Does the kernel size always have to match the image size, or are there functions that take care of this, for example in pythons numpy and scipy packages? And what about anti-aliasing effects?

FFT convolutions are based on the convolution theorem, which states that given two functions f and g, if Fd() and Fi() denote the direct and inverse Fourier transform, and * and . convolution and multiplication, then:
f*g = Fi(Fd(d).Fd(g))
To apply this to a signal f and a kernel g, there are some things you need to take care of:
f and g have to be of the same size for the multiplication step to be possible, so you need to zero-pad the kernel (or input, if the kernel is longer than it).
When doing a DFT, which is what FFT does, the resulting frequency domain representation of the function is periodic. This means that, by default, your kernel wraps around the edge when doing the convolution. If you want this, then all is great. But if not, you have to add an extra zero-padding the size of the kernel to avoid it.
Most (all?) FFT packages only work well (performance-wise) with sizes that do not have any large prime factors. Rounding the signal and kernel size up to the next power of two is a common practice that may result in a (very) significant speed-up.
If your signal and kernel sizes are f_l and g_l, doing a straightforward convolution in time domain requires g_l * (f_l - g_l + 1) multiplications and (g_l - 1) * (f_l - g_l + 1) additions.
For the FFT approach, you have to do 3 FFTs of size at least f_l + g_l, as well as f_l + g_l multiplications.
For large sizes of both f and g, the FFT is clearly superior with its n*log(n) complexity. For small kernels, the direct approach may be faster.
scipy.signal has both convolve and fftconvolve methods for you to play around. And fftconvolve handles all the padding described above transparently for you.

While fast convolution has better "big O" complexity than direct form convolution; there are a few drawbacks or caveats. I did some thinking about this topic for an article I wrote a while back.
Better "big O" complexity is not always better. Direct form convolution can be faster than using FFTs for filters smaller than a certain size. The exact size depends on the platform and implementations used. The crossover point is usually in the 10-40 coefficient range.
Latency. Fast convolution is inherently a blockwise algorithm. Queueing up hundreds or thousands of samples at a time before transforming them may be unacceptable for some real-time applications.
Implementation complexity. Direct form is simpler in terms of the memory, code space and in the theoretical background of the writer/maintainer.
On a fixed point DSP platform (not a general purpose CPU): the limited word size considerations of fixed-point FFT make large fixed point FFTs nearly useless. At the other end of the size spectrum, these chips have specialized MAC intstructions that are well designed for performing direct form FIR computation, increasing the range over which te O(N^2) direct form is faster than O(NlogN). These factors tend to create a limited "sweet spot" where fixed point FFTs are useful for Fast Convolution.

Related

How to optimally use a run length morton-encoded chunk of voxels to generate a mesh?

I am currently toying around with meshing voxel chunks, that is a N^3 list of voxel values. Since in my use-case most of the voxels are going to be of the same type a lot of the neighbors will share the same value. Thus, using RLE (run length encoding) makes sense to use, as it drastically cuts down the actual storage requirement at the cost of a O(log(n)) (n being the amount of runs in a chunk) random lookup. At the same time, I encode each voxel position as a z-order curve, specifically using morton encoding. This all works in my use-case and gives the expected space reductions required.
The issue is with meshing the individual chunks. Generating meshes takes up to 500ms (for N=48) which is simply too long for fluid gameplay. My current algorithm heavily borrows from the one described here and here.
Pseudocode algorithm:
- For each axis in [X, Y, Z]
- for each k in 0..N in axis
- Create a mask of size [N * N]
- for each u in 0..N of orthogonal axis:
- for each v in 0..N of second orthogonal axis:
- Check if (k, u, v) has a face between itself and (k+1, u, v)
- If yes, set mask[u*v*N] = true
- using the mask, make a greedy mesh and output that
The mesh generation itself is very fast (<<< 1ms) and wouldn't gain much from being optimized, but building the mask itself is very costly. As one can see in the tracing output below, each mesh_mask_building takes on average ~4ms which happens 3*N times per mesh!
My first thought to optimize this, was to use the inherent runs of the chunk and simply traverse those and build a mask of each, but this did not work out, as morton encoding is winding a lot throughout the primitive and as such would not be much better at constructing a mesh. It would also be highly suboptimal when one considers a chunk where only one layer is set to visible voxels. The current method generates a simple cuboid as it does not care about runs, but in my suggested method, each run would be seperate and generate more faces.
So my question is, how can I use a morton-run-length encoding to generate a mesh?

SLSQP in ScipyOptimizeDriver only executes one iteration, takes a very long time, then exits

I'm trying to use SLSQP to optimise the angle of attack of an aerofoil to place the stagnation point in a desired location. This is purely as a test case to check that my method for calculating the partials for the stagnation position is valid.
When run with COBYLA, the optimisation converges to the correct alpha (6.04144912) after 47 iterations. When run with SLSQP, it completes one iteration, then hangs for a very long time (10, 20 minutes or more, I didn't time it exactly), and exits with an incorrect value. The output is:
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|0
--------------------------------------------------------------
Design Vars
{'alpha': array([0.5])}
Nonlinear constraints
None
Linear constraints
None
Objectives
{'obj_cmp.obj': array([0.00023868])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|1
--------------------------------------------------------------
Design Vars
{'alpha': array([0.5])}
Nonlinear constraints
None
Linear constraints
None
Objectives
{'obj_cmp.obj': array([0.00023868])}
Optimization terminated successfully. (Exit mode 0)
Current function value: 0.0002386835700364719
Iterations: 1
Function evaluations: 1
Gradient evaluations: 1
Optimization Complete
-----------------------------------
Finished optimisation
Why might SLSQP be misbehaving like this? As far as I can tell, there are no incorrect analytical derivatives when I look at check_partials().
The code is quite long, so I put it on Pastebin here:
core: https://pastebin.com/fKJpnWHp
inviscid: https://pastebin.com/7Cmac5GF
aerofoil coordinates (NACA64-012): https://pastebin.com/UZHXEsr6
You asked two questions whos answers ended up being unrelated to eachother:
Why is the model so slow when you use SLSQP, but fast when you use COBYLA
Why does SLSQP stop after one iteration?
1) Why is SLSQP so slow?
COBYLA is a gradient free method. SLSQP uses gradients. So the solid bet was that slow down happened when SLSQP asked for the derivatives (which COBYLA never did).
Thats where I went to look first. Computing derivatives happens in two steps: a) compute partials for each component and b) solve a linear system with those partials to compute totals. The slow down has to be in one of those two steps.
Since you can run check_partials without too much trouble, step (a) is not likely to be the culprit. So that means step (b) is probably where we need to speed things up.
I ran the summary utility (openmdao summary core.py) on your model and saw this:
============== Problem Summary ============
Groups: 9
Components: 36
Max tree depth: 4
Design variables: 1 Total size: 1
Nonlinear Constraints: 0 Total size: 0
equality: 0 0
inequality: 0 0
Linear Constraints: 0 Total size: 0
equality: 0 0
inequality: 0 0
Objectives: 1 Total size: 1
Input variables: 87 Total size: 1661820
Output variables: 44 Total size: 1169614
Total connections: 87 Total transfer data size: 1661820
Then I generated an N2 of your model and saw this:
So we have an output vector that is 1169614 elements long, which means your linear system is a matrix that is about 1e6x1e6. Thats pretty big, and you are using a DirectSolver to try and compute/store a factorization of it. Thats the source of the slow down. Using DirectSolvers is great for smaller models (rule of thumb, is that the output vector should be less than 10000 elements). For larger ones you need to be more careful and use more advanced linear solvers.
In your case we can see from the N2 that there is no coupling anywhere in your model (nothing in the lower triangle of the N2). Purely feed-forward models like this can use a much simpler and faster LinearRunOnce solver (which is the default if you don't set anything else). So I turned off all DirectSolvers in your model, and the derivatives became effectively instant. Make your N2 look like this instead:
The choice of best linear solver is extremely model dependent. One factor to consider is computational cost, another is numerical robustness. This issue is covered in some detail in Section 5.3 of the OpenMDAO paper, and I won't cover everything here. But very briefly here is a summary of the key considerations.
When just starting out with OpenMDAO, using DirectSolver is both the simplest and usually the fastest option. It is simple because it does not require consideration of your model structure, and it's fast because for small models OpenMDAO can assemble the Jacobian into a dense or sparse matrix and provide that for direct factorization. However, for larger models (or models with very large vectors of outputs), the cost of computing the factorization is prohibitively high. In this case, you need to break the solver structure down more intentionally, and use other linear solvers (sometimes in conjunction with the direct solver--- see Section 5.3 of OpenMDAO paper, and this OpenMDAO doc).
You stated that you wanted to use the DirectSolver to take advantage of the sparse Jacobian storage. That was a good instinct, but the way OpenMDAO is structured this is not a problem either way. We are pretty far down in the weeds now, but since you asked I'll give a short summary explanation. As of OpenMDAO 3.7, only the DirectSolver requires an assembled Jacobian at all (and in fact, it is the linear solver itself that determines this for whatever system it is attached to). All other LinearSolvers work with a DictionaryJacobian (which stores each sub-jac keyed to the [of-var, wrt-var] pair). Each sub-jac can be stored as dense or sparse (depending on how you declared that particular partial derivative). The dictionary Jacobian is effectively a form of a sparse-matrix, though not a traditional one. The key takeaway here is that if you use the LinearRunOnce (or any other solver), then you are getting a memory efficient data storage regardless. It is only the DirectSolver that changes over to a more traditional assembly of an actual matrix object.
Regarding the issue of memory allocation. I borrowed this image from the openmdao docs
2) Why does SLSQP stop after one iteration?
Gradient based optimizations are very sensitive to scaling. I ploted your objective function inside your allowed design space and got this:
So we can see that the minimum is at about 6 degrees, but the objective values are TINY (about 1e-4).
As a general rule of thumb, getting your objective to around order of magnitude 1 is a good idea (we have a scaling report feature that helps with this). I added a reference that was about the order of magnitude of your objective:
p.model.add_objective('obj', ref=1e-4)
Then I got a good result:
Optimization terminated successfully (Exit mode 0)
Current function value: [3.02197589e-11]
Iterations: 7
Function evaluations: 9
Gradient evaluations: 7
Optimization Complete
-----------------------------------
Finished optimization
alpha = [6.04143334]
time: 2.1188600063323975 seconds
Unfortunately, scaling is just hard with gradient based optimization. Starting by scaling your objective/constraints to order-1 is a decent rule of thumb, but its common that you need to adjust things beyond that for more complex problems.

How Fast is Convolution Using FFT

I read that in order to compute the convolution of two signals x,y (1D for example), the naïve method takes O(NM).
However FFT is used to compute FFT^-1(FFT(x)FFT(y)), which takes O(N log(N)), in the case where N>M.
I wonder why is this complexity considered better than the former one, as M isn't necessarily bigger than log(N). Moreover, M is very often the length of a filter, which doesn't scale with the signal to be filtered, and will actually provide us with a complexity more similar to O(N) than to O(N^2).
Fast convolution in the frequency domain is typically more efficient than direct convolution when the size of the filter exceeds a particular threshold. So for relatively small filters direct convolution is more efficient, whereas for longer filters there comes a point at which FFT-based convolution is more efficient. The actual value of m for this "tipping point" depends on a lot of factors, but it's typically somewhere between 10 and 100.

Is there any obvious reason that Tensorflow uses COO format other than CSR for sparse matrix?

I'm trying to take performance advantages from built-in Sparse Matrix Multiplication API of Tensorflow.
And keveman recommended that tf.embedding_lookup_sparse is the right way.
But, it seems that the performance of embedding_lookup_sparse is somewhat disappointed in my experiments. Though it performs fairly small matrix multiplications, <1, 3196> and <3196, 1024>, sparse matmul with 0.1 sparsity fails to win the dense matrix multiplication.
If my implementation is correct, I think one of the reasons is that Tensorflow uses COO format which saves all index-nonzero pair. I'm not an expert on this domain but, isn't it widely known that CSR format is more performant on this kind of computation? Is there any obvious reason that Tensorflow internally uses COO format other than CSR for sparse matrix representation?
Just for the record, you say matrix multiplication, but one of your matrices is in fact a vector (1 x 3196). So this would make it a matrix-vector multiplication (different BLAS kernel). I will assume you mean matrix-vector multiplication for my answer.
Yes, CSR should theoretically be faster than COO for matrix-vector multiplication; this is because the storage size in CSR format is O(2nnz + n) vs O(3nnzs) and the sparse matrix vector multiplication is in many cases memory bound.
The exact performance difference compared to a dense matrix multiplication varies though based on the problem size, sparsity pattern, data type and implementation. It is difficult to say off the bat which should be faster, because the sparse storage format introduces indirection, which potentially leads to reduced locality and poor(er) utilisation of arithmetic units (e.g. no use of vectorisation).
Particularly when the matrix and vector size are so small that almost everything fits in cache, I would expect limited performance benefits. Sparse matrix structures are typically more useful for truly large matrices, ranging from 10sK x 10sK to 1B x 1B, which wouldn't even fit in main memory using a dense representation. For small problem sizes, in my experience, the storage advantage compared to dense formats is usually negated by the loss in locality and arithmetic efficiency. To some extent this is addressed by hybrid storage formats (such as Block CSR) which try to take the best of both worlds, and are very useful for some applications (doesn't look like tensorflow supports this).
In tensorflow, I would assume the COO format is used because it is more efficient for other operations, for example it supports O(1) updates, insertions and deletions from the data structure. It seems reasonable to trade ~50% performance in sparse matrix-vector multiply to improve performance on these operations.

How to analyse 'noisiness' of an array of points

Have done fft (see earlier posting if you are interested!) and got a result, which helps me. Would like to analyse the noisiness / spikiness of an array (actually a vb.nre collection of single). Um, how to explain ...
When signal is good, fft power results is 512 data points (frequency buckets) with low values in all but maybe 2 or 3 array entries, and a decent range (i.e. the peak is high, relative to the noise value in the nearly empty buckets. So when graphed, we have a nice big spike in the values in those few buckets.
When signal is poor/noisy, data values spread (max to min) is low, and there's proportionally higher noise in many more buckets.
What's a good, computationally non-intensive was of analysing the noisiness of this data set? Would some kind of statistical method, standard deviations or something help ?
The key is defining what is noise and what is signal, for which modelling assumptions must be made. Often an assumption is made of white noise (constant power per frequency band) or noise of some other power spectrum, and that model is fitted to the data. The signal to noise ratio can then be used to measure the amount of noise.
Fitting a noise model depends on the nature of your data: if you know that the real signal will have no power in the high frequency components, you can look there for an indication of the noise level, and use the model to predict what the noise will be at the lower frequency components where there is both signal and noise. Alternatively, if your signal is constant in time, taking multiple FFTs at different points in time and comparing them to get a standard deviation for each frequency band can give the level of noise present.
I hope I'm not patronising you to mention the issues inherent with windowing functions when performing FFTs: these can have the effect of introducing spurious "noise" into the frequency spectrum which is in fact an artifact of the periodic nature of the FFT. There's a tradeoff between getting sharp peaks and 'sideband' noise - more here www.ee.iitm.ac.in/~nitin/_media/ee462/fftwindows.pdf
Calculate a standard deviation and then you decide the threshold that will indicate noise. In practice this is usually easy and allows you to easily tweak the "noise level" as needed.
There is a nice single pass stddev algorithm in Knuth. Here is link that describes an implementation.
Standard Deviation
calculate the signal to noise ratio
http://en.wikipedia.org/wiki/Signal-to-noise_ratio
you could also check the stdev for each point and if it's under some level you choose then the signal is good else it's not.
wouldn't the spike be
treated as a noise glitch in SNR, an
outlier to be discarded, as it were?
If it's clear from the time-domain data that there are such spikes, then they will certainly create a lot of noise in the frequency spectrum. Chosing to ignore them is a good idea, but unfortunately the FFT can't accept data with 'holes' in it where the spikes have been removed. There are two techniques to get around this. The 'dirty trick' method is to set the outlier sample to be the average of the two samples on either site, and compute the FFT with a full set of data.
The harder but more-correct method is to use a Lomb Normalised Periodogram (see the book 'Numerical Recipes' by W.H.Press et al.), which does a similar job to the FFT but can cope with missing data properly.