We use SQL Server and have Winforms application. In our product, sometimes the records exceeds more than 50000 in single transaction and we face Performance issue there.
When we have huge amount of data, we generally do that in multiple database calls. So in one of our Import functionality we are updating servers in a bunch of 1000 rows. So if we have 5000 records, then while processing them (in a for loop) we update the first 1000 rows and then continue processing until we get new 1000 rows to update. This performs better but honestly not the best I feel in terms of performance.
But we have seen in other Import/Export functionality that updating database with every 5000 rows is giving good results when compared to 1000. So there is a lot of confusion we are facing and also code does not look to be same across our applications.
Can anyone give me an idea what makes this happen. You don't have sample data, database schema etc. and yes I do agree. But are there any scenarios which should be taken care/considered while working with database? And why different number of records are giving us the good results, is there something we are ignoring? I am not a champ in database and more of a programming guy in .Net. Will be happy to hear your suggestions.
Not sure if this is helpful, our data generally contains employee details like payroll information, personal details, Accrual Benefits, Compensation etc. Data is fed from an excel and also we generate lot of data in our internal process. Let me know if you need more information. Thanks!!
The more database callouts you have, the more connection management you will need (open connection, use connection, cleanup & close, are we using connection pooling etc.etc.). You're sending the same amount of data over the wire, but you are opening and closing the taps more often, which brings overhead.
The downside of this is that the amount of data held in a transaction is greater.
However, if I may make a suggestion, you might want to consider achieving this in a different way, by loading all data into the database as fast as possible (into interim tables where the contraints are deativated and with transactional management turned off, if possible) and then allowing the database to carry out the task of checking and validating the data.
Since you are using SQL Server, you can just turn on SQL Profiler, define an appropriate event filter, and watch what happens under different loads.
Related
I have a new idea and question about that I would like to ask you.
We have a CRM application on-premise / in house. We use that application kind of 24X7. We also do billing and payroll on the same CRM database which is OLTP and also same thing with SSRS reports.
It looks like whenever we do operation in front end which does inserts and updates to couple of entities at the same time, our application gets frozen until that process finishes. e.g. extracting payroll for 500 employees for their activities during last 2 weeks. Basically it summarize total working hours pulls that numbers from database and writes/updates that record where it says extract has been accomplished. so for 500 employees we are looking at around 40K-50K rows for Insert/Select/Update statements together.
Nobody can do anything while this process runs! We are considering the following options to take care of this issue.
Running this process in off-hours
OR make a copy of DB of Dyna. CRM and do this operations(extracting thousands of records and running multiple reports) on copy.
My questions are:
how to create first of all copy and where to create it (best practices)?
How to make it synchronize in real-time.
if we do select statement operation in copy DB than it's OK, but if we do any insert/update on copy how to reflect that on actual live db? , in short how to make sure both original and copy DB are synchronize to each other in real time.
I know I asked too many questions, but being SQL person, stepping into CRM team and providing suggestion, you know what I am trying to say.
Thanks folks for your any suggestion in advance.
Well to answer your question in regards to the live "copy" of a database a good solution is an alwayson availability group.
https://blogs.technet.microsoft.com/canitpro/2013/08/19/step-by-step-creating-a-sql-server-2012-alwayson-availability-group/
Though I dont think that is what you are going to want in this situation. Alwayson availability groups are typically for database instances that require very low failure time frames. For example: If the primary DB server goes down in the cluster it fails over to a secondary in a second or two at the most and the end users only notice a slight hiccup for a second.
What I think you would find better is to look at those insert statements that are hitting your database server and seeing why they are preventing you from pulling data. If they are truly locking the table maybe changing a large amount of your reads to "nolock" reads might help remedy your situation.
It would also be helpful to know what kind of resources you have allocated and also if you have proper indexing on the core tables for your DB. If you dont have proper indexing then a lot of the queries can take longer then normal causing the locking your seeing.
Finally I would recommend table partitioning if the tables you are pulling against are to large. This can help with a lot of disk speed issues potentially and also help optimize your querys if you partition by time segment (i.e. make a new partition every X months so when a query pulls from one time segment they only pull from that one data file).
https://msdn.microsoft.com/en-us/library/ms190787.aspx
I would say you need to focus on efficiency more then a "copy database" as your volumes arent very high to be needing anything like that from the sounds of it. I currently have a sql server transaction database running with 10 million+ inserts on it a day and I still have live reports hit against it. You just need the resources and proper indexing to accommodate.
I am working on Asp.Net MVC web application, back-end is SQL Server 2012.
This application will provide billing, accounting, and inventory management. The user will create an account by signup. just like http://www.quickbooks.in. Each user will create some masters and various transactions. There is no limit, user can make unlimited records in the database.
I want to keep stable database performance, after heavy data load. I am maintaining proper indexing and primary keys in it, but there would be a heavy load on the database, per user.
So, should I create a separate database for each user, or should maintain one database with UserID. Add UserID in each table and making a partition based on UserID?
I am not an expert in SQL Server, so please provide suggestions with clear specifications.
Please inform me if there is any lack of information.
A DB per user is what happens when customers need to be able pack up and leave taking the actual database with them. Think of a self hosted wordpress website. Or if there are incredible risks to one user accidentally seeing another user's data, so it's safer to rely on the servers security model than to rely on remembering to add the UserId filter to all your queries. I can't imagine a scenario like that, but who knows-- maybe if the privacy laws allowed for jail time, I would rather data partitioned by security rules rather than carefully writing WHERE clauses.
If you did do user-per-database, creating a new user will be 10x more effort. While INSERT, UPDATE and so on stay the same from version to version, with each upgrade the syntax for database, user creation, permission granting and so on will evolve enough to break those scripts each SQL version upgrade.
Also, this will multiply your migration headaches by the number of users. Let's say you have 5000 users and you need to add some new columns, change a columns data type, update a trigger, and so on. Instead of needing to run that change script 1x, you need to run it 5000 times.
Per user Dbs also probably wastes disk space. Each of those databases is going to have a transaction log, sitting idle taking up the minimum log space.
As for load, if collectively your 5000 users are doing 1 billion inserts, updates and so on per day, my intuition tells me that it's going to be faster on one database, unless there is some sort of contension issue (everyone reading and writing to the same table at the same time and the same pages of the same table). Each database has machine resources (probably threads and memory) per database doing housekeeping, so these extra DBs can't be free.
Anyhow, the best thing to do is to simulate the two architectures and use a random data generator to simulate load and see how they perform.
It's not an easy answer to give.
First, there is logical design to be considered. Then you have integrity, security, management and performance (in this very order).
A database is a logical unit of data, self contained. Ideally, you should be able to take a database, move it to another instance, probably change the connection strings and be running again.
All the constraints are database-level. No foreign keys can exist referencing some object outside the database.
So, try thinking in these terms first.
How would you reliably prevent one user messing up the other user's data? Keep in mind that it's just a matter of time before someone opens an excel sheet and fire up queries on the database bypassing your application. Row level security in SQL Server is something you don't want to deal with.
Multiple databases mean that all management tasks should be scripted out and executed on all databases. Yes, there is some overhead to it, but once you set it up it's just the matter of monitoring. If a database goes suspect, it's a single customer down, not all of them. You can even have different versions for different customes if each customer have it's own database. Additionally, if you roll an upgrade, you can do it per customer, so the inpact will be much less.
Performance is the least relevant factor here. Of course, it really depends on how many customers and how much data, but proper indexing will solve these issues. Scale-out is much easier with multiple databases.
BTW, partitioning, as you mentioned it, is never a performance booster, it's simply a management feature, allowing for faster loading and evicting of data from a table.
I'd probably put each customer in separate database, but it's up to you eventually to make a decision for yourself. Hope I've helped some with this.
We have data stored in a data warehouse as follows:
Price
Date
Product Name (varchar(25))
We currently only have four products. That changes very infrequently (on average once every 10 years). Once every business day, four new data points are added representing the day's price for each product.
On the website, a user can request this information by entering a date range and selecting one or more products names. Analytics shows that the feature is not heavily used (about 10 users requests per week).
It was suggested that the data warehouse should daily push (SFTP) a CSV file containing all data (currently 6718 rows of this data and growing by four each day) to the web server. Then, the web server would read data from the file and display that data whenever a user made a request.
Usually, the push would only be once a day, but more than one push could be possible to communicate (infrequent) price corrections. Even in the price correction scenario, all data would be delivered in the file. What are problems with this approach?
Would it be better to have the web server make a request to the data warehouse per user request? Or does this have issues such as a greater chance for network errors or performance issues?
Would it be better to have the web server make a request to the data warehouse per user request?
Yes it would. You have very little data, so there is no need to try and 'cache' this in some way. (Apart from the fact that CSV might not be the best way to do this).
There is nothing stopping you from doing these requests from the webserver to the database server. With as little information as this you will not find performance an issue, but even if it would be when everything grows, there is a lot to be gained on the database-side (indexes etc) that will help you survive the next 100 years in this fashion.
The amount of requests from your users (also extremely small) does not need any special treatment, so again, direct query would be the best.
Or does this have issues such as a greater chance for network errors or performance issues?
Well, it might, but that would not justify your CSV method. Examples and why you need not worry, could be
the connection with the databaseserver is down.
This is an issue for both methods, but with only one connection per day the change of a 1-in-10000 failures might seem to be better for once-a-day methods. But these issues should not come up very often, and if they do, you should be able to handle them. (retry request, give a message to user). This is what enourmous amounts of websites do, so trust me if I say that this will not be an issue. Also, think of what it would mean if your daily update failed? That would present a bigger problem!
Performance issues
as said, this is due to the amount of data and requests, not a problem. And even if it becomes one, this is a problem you should be able to catch at a different level. Use a caching system (non CSV) on the database server. Use a caching system on the webserver. Fix your indexes to stop performance from being a problem.
BUT:
It is far from strange to want your data-warehouse separated from your web system. If this is a requirement, and it surely could be, the best thing you can do is re-create your warehouse-database (the one I just defended as being good enough to query directly) on another machine. You might get good results by doing a master-slave system
your datawarehouse is a master-database: it sends all changes to the slave but is inexcessible otherwise
your 2nd database (on your webserver even) gets all updates from the master, and is read-only. you can only query it for data
your webserver cannot connect to the datawarehouse, but can connect to your slave to read information. Even if there was an injection hack, it doesn't matter, as it is read-only.
Now you don't have a single moment where you update the queried database (the master-slave replication will keep it updated always), but no chance that the queries from the webserver put your warehouse in danger. profit!
I don't really see how SQL injection could be a real concern. I assume you have some calendar type field that the user fills in to get data out. If this is the only form just ensure that the only field that is in it is a date then something like DROP TABLE isn't possible. As for getting access to the database, that is another issue. However, a separate file with just the connection function should do fine in most cases so that a user can't, say open your webpage in an HTML viewer and see your database connection string.
As for the CSV, I would have to say querying a database per user, especially if it's only used ~10 times weekly would be much more efficient than the CSV. I just equate the CSV as overkill because again you only have ~10 users attempting to get some information, to export an updated CSV every day would be too much for such little pay off.
EDIT:
Also if an attack is a big concern, which that really depends on the nature of the business, the data being stored, and the visitors you receive, you could always create a backup as another option. I don't really see a reason for this as your question is currently stated, but it is a possibility that even with the best security an attack could happen. That mainly just depends on if the attackers want the information you have.
Question regarding my sql database design for a project i am working on.
I will be receiving data every few seconds and i am going to need to store that data into a database. I am using mySQL for my DBMS. The data needs to be stored in the database with a userid attached to each piece of data. I will only be handling one user per application. So, each instance of the application will only be handling one users data. The remote database will be storing all users data though. So, that is why i need userid's to know whose data is whose.
My idea was to wait until i receive like 50 data packets and create a delimited string of all 50 data packets. (Maybe separated by commas) Then push that string to the database along with the userid. And store the data like that. My question is, is that a good way to do it? Is there a better way? Is this bad practice? TIPS PLEASE! =)
I will be receiving a lot of this data. One data packet like every second, sometimes faster. Just let me know what you think.
The DBMS will be running on a remote machine. The application will be running on an android phone.
Thanks in advance!
I would not suggest concatenating a bunch of values together to send a delimited string to the database. That just creates additional work on the database to parse the string.
Any reasonable framework for interacting with the database will let you create and send batches of SQL statements with different values for the bind variables to the database. That keeps the nice, friendly syntax of the stored procedure or INSERT statement, it keeps the database properly normalized, and it accomplishes the performance goal of minimizing the number of round-trips.
If the dbms is running on a good server, and all you do with the data is a simple insert to a reasonably simple table, 1 insert per second should not a strain at all. I'd expect it to be hardly measurable.
The question you really have to answer is the tolerance you have for losing data. A request per second transferring under 1k of data isn't much, especially using json vs. xml. Then again, battery life is something to keep in mind on mobile devices, so making a request every 5-60 seconds is also doable.
There's no reason you cannot batch your updates to the server.
If you have no tolerance for data loss, you could collect your batch of 50 updates on local storage, and upload them. If a failure occurs in transmission you can resend. In this case, however, I would want to have some record ID that's reasonably guaranteed to be unique, such as a UUID. This way the server can see which records it's already processed and exclude them from reprocessing.
I'm going to address the issue of storing it as a delimited string. HOw do you intend to query this data after it is stored? If you will need to find the data for one or aeven a small group of values but not the entire string, donot consider storing the data this way as it will give you horrible performance in querying and will be very painful to write queries for. In general, storing more than one piece of dat ina field is a bad thing, it means you need a related table.
Also, for what you are doing, if you don't need to to analytical querying of the data, perhaps a nosql database would be a better choice than a relational database.
We have an application that takes real time data and inserts it into database. it is online for 4.5 hours a day. We insert data second by second in 17 tables. The user at any time may query any table for the latest second data and some record in the history...
Handling the feed and insertion is done using a C# console application...
Handling user requests is done through a WCF service...
We figured out that insertion is our bottleneck; most of the time is taken there. We invested a lot of time trying to finetune the tables and indecies yet the results were not satisfactory
Assuming that we have suffecient memory, what is the best practice to insert data into memory instead of having database. Currently we are using datatables that are updated and inserted every second
A colleague of ours suggested another WCF service instead of database between the feed-handler and the WCF user-requests-handler. The WCF mid-layer is supposed to be TCP-based and it keeps the data in its own memory. One may say that the feed handler might deal with user-requests instead of having a middle layer between 2 processes, but we want to seperate things so if the feed-handler crashes we want to still be able to provide the user with the current records
We are limited in time, and we want to move everything to memory in short period. Is having a WCF in the middle of 2 processes a bad thing to do? I know that the requests add some overhead, but all of these 3 process(feed-handler, In memory database (WCF), user-request-handler(WCF) are going to be on the same machine and bandwidth will not be that much of an issue.
Please assist!
I would look into creating a cache of the data (such that you can also reduce database selects), and invalidate data in the cache once it has been written to the database. This way, you can batch up calls to do a larger insert instead of many smaller ones, but keep the data in-memory such that the readers can read it. Actually, if you know when the data goes stale, you can avoid reading the database entirely and use it just as a backing store - this way, database performance will only affect how large your cache gets.
Invalidating data in the cache will either be based on whether its written to the database or its gone stale, which ever comes last, not first.
The cache layer doesn't need to be complicated, however it should be multi-threaded to host the data and also save it in the background. This layer would sit just behind the WCF service, the connection medium, and the WCF service should be improved to contain the logic of the console app + the batching idea. Then the console app can just connect to WCF and throw results at it.
Update: the only other thing to say is invest in a profiler to see if you are introducing any performance issues in code that are being masked. Also, profile your database. You mention you need fast inserts and selects - unfortunately, they usually trade-off against each other...
What kind of database are you using? MySQL has a storage engine MEMORY which would seem to be suited to this sort of thing.
Are you using DataTable with DataAdapter? If so, I would recommend that you drop them completely. Insert your records directly using DBCommand. When users request reports, read data using DataReader, or populate DataTable objects using DataTable.Load (IDataReader).
Storying data in memory has the risk of losing data in case of crashes or power failures.