When a query is executed, what happens first in the back-end? - sql

I'm having a query in COGNOS which would fetch me a huge volume of data. Since the execution time would be higher, I'd like to fine tune my query. Everyone knows that the WHERE clause in the query would get executed first.
My doubt is which would happen first when a query is executed?
The JOIN in the query would be established first or the WHERE clause would be executed first?
If JOIN is established first, I should specify the filters of the DIMENSION first else I should specify the filters of the FACT first.
Please explain me.
Thanks in advance.

The idea of SQL is that it is a high level declarative language, meaning you tell it what results you want rather than how to get them. There are exceptions to this in various SQL implementations such as hints in Oracle to use a specific index etc, but as a general rule this holds true.
Behind the scenes the optimiser for your RDBMS implements relational algebra to do a cost based estimate of the different potential execution plans and select the one that it predicts will be the most efficient. The great thing about this is that you do not need to worry what order you write your where clauses in etc, so long as all of the information is there the optimiser should pick the most efficient plan.
That being said there are often things that you can so on the database to improve query performance such as building indexes on columns in large tables that are often used in filtering criteria or joins.
Another consideration is whether you can use parallel hints to speed up your run time but this will depend on your query, the execution plan that is being used, the RDBMS you are using and the hardware it is running on.
If you post the query syntax and what RDBMS you are using we can check if there is anything obvious that could be amended in this case.

The order of filters definitely does not matter. The optimizer will take care of that.
As for filtering on the fact or dimension table - do you mean you are exposing the same field in your Cognos model for each (ex ProductID from both fact and Product dimension)? If so, that is not recommended. Generally speaking, you should expose the dimension field only.
This is more of a question about your SQL environment, though. I would export the SQL generated by Cognos from within Report Studio (Tools -> Show Generated SQL). From there, hopefully you are able to work with a good DBA to see if there are any obvious missing indexes, etc in your tables.
There's not a whole lot of options within Cognos to change the SQL generation. The prior poster mentions hints, which could work if writing native SQL, but that is a concept not known to Cognos. Really, all you can do is change the implict/explict join syntax which just controls whether the join happens in an ON statement or in the WHERE. Although the WHERE side is pretty ugly it generally compiles the same as ON.

Related

Is there way to have ordered output without ORDER BY clause in MS SQL

We have a large application. Recently, we upgraded the database MS SQL 2016. As a result, we are having issues with output order in some reports. Unfortunately, we can not alter the source code of the application and will not be able to do this for awhile. The reason for this behavior is that some queries in format "SELECT * FROM table" with is no "ORDER BY" clause on them.
Is there any creative way to order the output? Like to add a trigger on SELECT<(I know there is no such thing...)>? Any other way? Any type of index that would be an ORDER default?
UPDATE: I can not alter the source code. This is compiled application and upgrade cycle is few months away. If I could, I would just go through the source code and change those queries.
You asked:
Is there a way to have ordered output without an ORDER BY clause in MS SQL
No.
Unfortunately, there is not.
SQL (in all its flavors) is a declarative scheme for manipulating sets of rows of tables. Sets of things like rows have no inherent order.
If SQL, in any flavor, without ORDER BY statements, happens to deliver rows in an order you expect, it's a coincidence. It's pure luck. Formally speaking, without ORDER BY SQL delivers rows in an unpredictable order."Unpredictable" is like "random," but worse. Random implies you might get a different order every time you run the query: you can catch that kind of thing in system test. Unpredictable means you get the same order each time until you don't. Now you don't.
This is in the basic nature of SQL. Why? The optimizers in modern database servers are really smart about delivering exactly what you asked for as fast as possible, and they get smarter with every release. SQL Server 2016's optimizer probably noticed some opportunities to use concurrency for your queries, or something like that, and took them.
Your choices here are all unpleasant:
Roll back the database upgrade. That may or may not fix the problem.
Make emergency fixes to your software load and roll them out ahead of schedule.
Live with the wrongly-ordered reports until you can fix your software.
I wrote a long answer here so you can have useful arguments to present to your corporate overlords about your situation. I don't envy you when you explain this.

BigQuery - how to think about query optimisation when coming from a SQL Server background

I have a background that includes SQL Server and Informix database query optimisation (non big-data). I'm confident in how to maximise database performance on those systems. I've recently been working with BigQuery and big data (about 9+ months), and optimisation doesn't seem to work the same way. I've done some research and read some articles on optimisation, but I still need to better understand the basics of how to optimise on BigQuery.
In SQL Server/Informix, a lot of the time I would introduce a column index to speed up reads. BigQuery doesn't have indexes, so I've mainly been using clustering. When I've done benchmarking after introducing a cluster for a column that I thought should make a difference, I didn't see any significant change. I'm also not seeing a difference when I switch on query cacheing. This could be an unfortunate coincidence with the queries I've tried, or a mistaken perception, however with SQL Server/SQL Lite/Informix I'm used to seeing immediate significant improvement, consistently. Am I misunderstanding clustering (I know it's not exactly like an index, but I'm expecting it should work in a similar type of way), or could it just be that I've somehow been 'unlucky' with the optimisations.
And this is where the real point is. There's almost no such thing as being 'unlucky' with optimisation, but in a traditional RDBMS I would look at the execution plan and know exactly what I need to do to optimise, and find out exactly what's going on. With BigQuery, I can get the 'execution details', but it really isn't telling me much (at least that I can understand) about how to optimise, or how the query really breaks down.
Do I need a significantly different way of thinking about BigQuery? Or does it work in similar ways to an RDBMS, where I can consciously make the first JOINS eliminate as many records as possible, use 'where' clauses that focus on indexed columns, etc. etc.
I feel I haven't got the control to optimise like in a RDBMS, but I'm sure I'm missing a major point (or a few points!). What are the major strategies I should be looking at for BigQuery optimisation, and how can I understand exactly what's going on with queries? If anyone has any links to good documentation that would be fantastic - I'm yet to read something that makes me think "Aha, now I get it!".
It is absolutely a paradigm shift in how you think. You're right: you don't have hardly any control in execution. And you'll eventually come to appreciate that. You do have control over architecture, and that's where a lot of your wins will be. (As others mentioned in comments, the documentation is definitely helpful too.)
I've personally found that premature optimization is one of the biggest issues in BigQuery—often the things you do trying to make a query faster actually have a negative impact, because things like table scans are well optimized and there are internals that you can impact (like restructuring a query in a way that seems more optimal, but forces additional shuffles to disk for parallelization).
Some of the biggest areas our team HAS seem greatly improve performance are as follows:
Use semi-normalized (nested/repeated) schema when possible. By using nested STRUCT/ARRAY types in your schema, you ensure that the data is colocated with the parent record. You can basically think of these as tables within tables. The use of CROSS JOIN UNNEST() takes a little getting used to, but eliminating those joins makes a big difference (especially on large results).
Use partitioning/clustering on large datasets when possible. I know you mention this, just make sure that you're pruning what you can using _PARTITIONTIME when possible, and also using clutering keys that make sense for your data. Keep in mind that clustering basically sorts the storage order of the data, meaning that the optimizer knows it doesn't have to continue scanning if the criteria has been satisfied (so it doesn't help as much on low-cardinality values)
Use analytic window functions when possible. They're very well optimized, and you'll find that BigQuery's implementation is very mature. Often you can eliminate grouping this way, or filter our more of your data earlier in the process. Keep in mind that sometimes filtering data in derived tables or Common Table Expressions (CTEs/named WITH queries) earlier in the process can make a more deeply nested query perform better than trying to do everything in one flat layer.
Keep in mind that results for Views and Common Table Expressions (CTEs/named WITH queries) aren't materialized during execution. If you use the CTE multiple times, it will be executed multiple times. If you join the same View multiple times, it will be executed multiple times. This was hard for members of our team who came from the world of materialized views (although it looks like somethings in the works for that in BQ world since there's an unused materializedView property showing in the API).
Know how the query cache works. Unlike some platforms, the cache only stores the output of the outermost query, not its component parts. Because of this, only an identical query against unmodified tables/views will use the cache—and it will typically only persist for 24 hours. Note that if you use non-deterministic functions like NOW() and a host of other things, the results are non-cacheable. See details under the Limitations and Exceptions sections of the docs.
Materialize your own copies of expensive tables. We do this a lot, and use scheduled queries and scripts (API and CLI) to normalize and save a native table copy of our data. This allows very efficient processing and fast responses from our client dashboards as well as our own reporting queries. It's a pain, but it works well.
Hopefully that will give you some ideas, but also feel free to post queries on SO in the future that you're having a hard time optimizing. Folks around here are pretty helpful when you let them know what your data looks like and what you've already tried.
Good luck!

Are sql tuning ways always same for different DB engine?

I used Oracle for the half past year and learned some tricks of sql tuning,but now our DB is moving to greenplum and the project manager suggest us to change some of the codes that writted in Oracle sql for their efficiency or grammar.
I am curious that Are sql tuning ways same for different DB engine,like oracle,postgresql,mysql and so on?if yes or not,why?Any suggestion are welcomed!
some like:
in or exists
count(*) or count(column)
use index or not
use exact column instead of select *
For the most part the syntax that is used will remain the same, there may be small differences from one engine to another and you may run into different terms to achieve some of the more specific output or do more complex tasks. In order to achieve parity you will need to learn those new terms.
As far as tuning, this will vary from system to system. Specifically going from Oracle to Greenplum you are looking at moving from a database where efficiency in a query if often driven by dropping an index on the data. Where Greenplum is a parallel execution system where efficiency is gained by effectively distributing the data across multiple systems and querying them in parallel. In Greenplum indexing is an additional layer that usually does not add benefit, just additional overhead.
Even within a single system using changing the storage engine type can result in different ways to optimize a query. In practice queries are often moved to a new platform and work, but are far from optimal as they don't take advantage of optimizations of that platform. I would strongly suggest getting an understanding of the new platform and you should not go in assuming a query that is optimized for one platform is the optimal way to run it in another.
Getting specifics in why they differ requires someone to be an expert in bother to be able to compare both. I don't claim to know much of greenplum.
The basic principles which I would expect all developers to learn over time dont really change. But there are "quirks" of individual engines which make specific differences. From your question I would personally anticipate 1 and 4 to remain the same.
Indexing is something which does vary. For example the ability to use two indexes was not (is not?) Ubiquitous. I wouldn't like to guess which DBMS can / can't count columns from the second field in a composite index. And the way indexes are maintained is very different from one DBMS to the next.
From my own experience I've also seen differences caused by:
Different capabilities in the data access path. As an example, one optimisation is for a DBMS to create a bit map of rows (matching and not matching) the combine multiple bitmaps to select rows. A DBMS with this feature can use multiple indexes in a single query. One without it can't.
Availability of hints / lack of hints. Not all DBMS support them. I know they are very common in Oracle.
Different locking strategies. This is a big one and can really affect update and insert queries.
In some cases DBMS have very specific capabilities for certain types of data such as geographic data or searchable free text (natural language). In these cases the way of working with the data is entirely different from one DBMS to the next.

Over use of Oracle With clause?

I'm writing many reporting queries for my current employer utilizing Oracle's WITH clause to allow myself to create simple steps, each of which is a data-oriented transformation, that build upon each other to perform a complex task.
It was brought to my attention today that overuse of the WITH clause could have negative side effects on the Oracle server's resources.
Can anyone explain why over use of the Oracle WITH clause may cause a server to crash? Or point me to some articles where I can research appropriate use cases? I started using the WITH clause heavily to add structure to my code and make it easier to understand. I hope with some informative responses here I can continue to use it efficiently.
If an example query would be helpful I'll try to post one later today.
Thanks!
Based on this: http://www.dba-oracle.com/t_with_clause.htm it looks like this is a way to avoid using temporary tables. However, as others will note, this may actually mean heavier, more expensive queries that will put an additional drain on the database server.
It may not 'crash'. That's a bit dramatic. More likely it will just be slower, use more memory, etc. How that affects your company will depend on the amount of data, amount of processors, amount of processing (either using with or not)

Why is dynamical selection of column & table names so difficult in SQL?

I figure there has to be a specific design reason why you can't write a query like the following one:
select
(select column_name
from information_schema
where column_name not like '%rate%'
and table_name = 'Fixed_Income')
from Fixed_Income
and instead have to resort to dynamic SQL.
Anyone knows what that reason is? I tried Googling it, but all the hits were cries for help in solving the problem -- meaning it's a pretty widespread need and not well understood.
The reason is that the query optimizer needs to know the exact schema objects you are referring to at compile time. It needs them to optimize the query. You wouldn't believe how slow the RDBMS would be without having this information available to the query optimizer.
It's a little like the performance difference of static vs. dynamic typing in practice: There is usually a non-trivial difference (I'm thinking just about mainstream languages here). The compiler can exploit the static information to generate great code.
Even if this feature was present, it would be implemented by first computing the table and column names and then doing a standard "static" query planning.
You ask a very interesting question.
The "relational" in "relational algebra" refers to name-value pairs, not to relationships between tables. In relational algebra, there is no requirement that all records in a set (table) have the same columns.
My best guess is that the limitation is related to the idea of entity-relationship diagrams comes into play. A database is designed around tables, and these tables have relationships to each other. The choice of a relational database for data storage and access was specifically when the data could be stored this way. Knowing the entities and their attributes suggests a static form of the data and hence static references in queries.
In addition, SQL as a language is a declarative language rather than a procedural language. This suggests -- but does not impose -- a compilation step separate from the running of the query. In general, the SQL engine does the following (at a very high level):
Compiles the query, generally into some sort of data flow process.
Optimizes the data flow process. (Typically part of the compilation process.)
Runs the query.
The first two result in what is called "the query plan". You really cannot do optimization, though, unless you know about the objects you are operating on. So, dynamically choosing tables and columns means that optimization would be part of running the query rather than compiling it.
Finally, some databases like SQL Server support dynamic SQL. This allows you to build strings that get compiled and run at the same time. This is very useful for complex decision support queries. It is not recommended when you need fast transaction throughput, because the overhead for compilation is too high relative to the query.