Working between classes Objective C - objective-c

I have a basic question about working with classes in objective-c and maybe just programming in general. I would like to use a variable declared in my class Signup.h in another class, Exittext.m. When I include "Signup.h" in my .m file and try to use the variable, it doesn't know what it is. Is this because they are private? Is there a way to do this or can I only use variables declared in that particular class?
#interface SignupView : UIViewController
NSMutableArray *textfields;
}
#implementation Exittextfields
- (BOOL) textFieldShouldReturn:(UITextField *)textField
{
[textfields resignFirstResponder];
return YES;
}

In traditional OO programming, accessing a variable in another class involves manually writing getter and accessor methods to expose/modify a "private" variable. In Objective-C, properties (instance variables declared with #property) takes care of generating those getters and setters automatically.
Check out this great tutorial by Ray Wenderlich.
So in your case, you'll need to declare the mutable array you want to be accessed by other classes in the .h file as a property.
Example:
#property (nonatomic, strong) NSMutableArray *myArray;
Now when a new instance of Signup is called, the array myArray can be properly accessed using either a traditional getter method or dot syntax.
Example:
Signup *sign = [[Signup alloc] init];
[sign myArray];
//OR
sign.myArray;

Related

Passing a class instance as a parameter to one of its own functions

When a class of properties (let's call it class_X) is being instantiated from another class, all of class_X's methods and functions are also included in every instance.
Q1: Wouldn't that add substantial overheads, especially if there are multiple instances of that class?
The class instance (class_X) could then be passed to other methods and functions in other classes as a parameter.
Q2: Is it safe to pass it as a parameter to a C-style function (let's call it function_C) which resides in the same class (function_C resides in class_X)?
Thanks in advance.
UPDATE: Here's some code to illustrate:
class_X header:
//class_X.h
#interface class_X : NSObject
#property (nonatomic, assign) NSInteger intProp;
#property (nonatomic, strong) NSArray *arrProp;
void function_C (class_X *cx);
#end
class_X implementation:
//class_X.m
#import "class_X.h"
#implementation class_X
void function_C (class_X *cx)
{
//code...
}
#end
instantiating class_X:
#implementation someOtherViewController
- (void) viewDidLoad {
[super viewDidLoad];
class_X *cx = [[class_X alloc] init];
cx.intProp = 123;
cx.arrProp = #[#"one", #"two", #"three"];
function_C (cx); //does this not cause some sort of recursion?
}
#end
To have some naming conventions: "class instances" is akin of ambiguous. There are
instances (or instance objects) having a class.
classes, akin of type for an instance object.
class objects
So I assume that you want to use "instance objects of class X", when you write "class instances".
To your Q:
No, there is no overhead. Objective-C is a class-based programming language in contrast to JS that is prototype-based. That has the consequence that every instance has all instance methods that are declared as instance methods by the class. Therefore they are stored only a single time for all instances. The memory footprint for the methods does not depend on the number of instances are created. It is a one-timer. (The memory footprint for properties depends heavily on the number of instances.)
It is completely safe to pass references to instances to a function. Moreover the function can be defined everywhere. Of course, it has to see the interface of the class f the passed instance, probably via an import.

Simple Class Extension / Inheritance Clarification

I've been writing Objective-C for a few years now, and decided to go back and learn the very basics to help me write even better code. I'm trying to learn all about instance variables, inheritance and class extensions. I've been reading up on all three, but there is one thing that boggles my mind. I have a simple app that contains 2 classes, Person, Male (inherits from Person), and of course Main (which imports the Male class, therefore being able to access the instance variables found in both Person and Male).
The code is simple, and for the sake of space I won't post all of it. Basically Main takes these variables and plays around with them. This is the part that is boggling my mind:
#interface Person : NSObject {
float heightInMeters;
int weightInKilos;
}
#property float heightInMeters;
#property int weightInKilos;
#end
When I delete the brackets and variable declarations, leaving it like this:
#interface Person : NSObject
#property float heightInMeters;
#property int weightInKilos;
#end
The code still inherits and executes just fine.
1. What is the point of even declaring them there in the first place if we can just create two properties?
2. why create two instance variables AND properties to correspond with them?
3. I know that we can declare the variables in the .m instead to keep them private to the class and everything that subclasses it. like this:
#implementation Person {
float heightInMeters;
int weightInKilos;
}
What is the difference here? I feel like I'm missing a lot of basics. Is there a simplistic way of putting this all in perspective?
When you declare a #property, the compiler will automatically synthesize the variable prefixed with an underscore, a getter method, and a setter method.
#interface MyClass ()
#property(strong, nonatomic) NSString *myString;
#end
In this example the compiler would syhtnesize the variable as _myString, the getter as
-(NSString *)myString
and the setter as
-(void)setMyString:(NSString *)string
The keywords after "#property" (strong, nonatomic) define the property's attributes. strong, the default, implies ownership, meaning that in this case MyClass instances will essentially be responsible for the retain/release of their respective myString objects. nonatomic means the variable is not guaranteed to always be a valid value in a multithreaded environment, for example if the getter is called at the same time as the setter.
Additionally, the compiler will treat dot syntax used to retrieve/set instance variables as calls to the appropriate getter/setter methods. Therefore, given an instance of MyClass
MyClass *exampleClass = [[MyClass alloc] init];
Both of the following are equivalent statements:
NSString *string1 = example.myString; // dot syntax
NSString *string1 = [example myString]; // explicit call to the getter method
For further reading, take a look at Apple's Programming with Objective-C Guide.
As for your specific questions:
1. What is the point of even declaring them there in the first place if we can just create two properties?
It's actually not a good idea to declare variables explicitly as public variables in your MyClass.h file (or in most other cases). Instead, declaring them as properties automatically creates a private variable (and accessor methods), making adhering to OOP best practices a little easier. So there is no point in declaring
// MyClass.h
#interface MyClass : NSObject {
NSString *myString // public variables not good
}
Also because of what I stated above regarding dot syntax, if you use self.myString internally in MyClass.m or instanceOfMyClass.myString externally, the public variable myString will never even be touched because the synthesized variable is named _myString.
2. Why create two instance variables AND properties to correspond with them?
See above--you don't need two instance variables, only one.
3. I know that we can declare the variables in the .m instead to keep them private to the class and everything that subclasses it. What is the difference here? I feel like I'm missing a lot of basics. Is there a simplistic way of putting this all in perspective?
If you declare your variables privately in the #implementation part of your .m file, the compiler won't be able to help you by synthesizing the getters and setters. Even as private methods, getters and setters can help reduce complexity in your code, for example checking for the validity of variable values. (Note: you can override accessor methods.)
// MyClass.m
#interface MyClass () // private interface
#property(nonatomic, strong) NSString *myString;
#end
#implementation MyClass {
// no more need for private variables!
// compiler will synthesize NSString *_myString and accessors
}
-(void)setMyString:(NSString *)string { // overwrite setter
// no empty strings allowed in our object (for the sake of example)
NSAssert([string length] > 0, #"String must not be empty");
// assign private instance variable in setter
_myString = string;
}
#end
This way, even when you subclass MyClass, the subclass will inherit the getter and setter methods that were synthesized for us by the compiler.

Which one is initialized, property or its instance variable

Suppose I have a property called myPropertyName defined in my class MyClassName. Manual memory management is used throughout this post.
MyClassName.h
#import <UIKit/UIKit.h>
#interface MyClassName : NSObject {
#private
NSObject* myPropertyName;
#public
}
#property (nonatomic, retain) NSObject* myPropertyName;
// Some methods prototypes are here
#end
MyClassName.m
#import "MyClassName.h"
#implementation MyClassName
#synthesize myPropertyName;
// Some methods are here
#end
I'm confused with usages such as the place of myPropertyName declaration, its difference between instance variable. For example, what is the difference among these three statement of initialization code, for example, in the customized -(void)init method for my class myClassName.
self.myPropertyName = [[[NSObject alloc] init] autorelease];
This one is calling myPropertyName setter, but I'm not sure what is the name of the instance variable being used in the setter, myPropertyName (since I've declared a #private field named myPropertyName) or _myPropertyName (people say that this one with underbar is the default)?
myPropertyName = [[NSObject alloc] init];
Does this initialize the instance variable of the myPropertyName property? If I don't have #synthesize myPropertyName = _myPropertyName;, would it be wrong since the default instance variable for the property is said to be _myPropertyName.
_myPropertyName = [[NSObject alloc] init];
Is _myPropertyName still declared as the instance variable for my property myPropertyName even if I use #synthesize myPropertyName; and #private NSObject* myPropertyName;?
In my understanding, a property is just a name (such as myPropertyName), there should be some instance variable encapsulated to be used in actual operations in the code, such as assigning values.
First off, I highly recommend reading Apple's documentation on properties, also linked by nhgrif. However, I understand docs can be a bit dense reading material (though Apple's, I find, are not so bad), so I'll give a brief overview of properties here.
I like examples, so I'm going to rewrite your two classes in a bit more current form.
MyClassName.h
#import <UIKit/UIKit.h>
#interface MyClassName : NSObject
#property (nonatomic, strong) NSObject *myPropertyName;
// method prototypes here
#end
MyClassName.m
#import "MyClassName.h"
#implementation MyClassName
// some methods here
#end
The class MyClassName now has a property called myPropertyName of type NSObject *. The compiler will do a lot of work for you for "free" in this instance. Specifically, it will generate a backing variable, and also generate a setter and getter for myPropertyName. If I were to rewrite the two files, and pretend I'm the compiler, including that stuff, they would look like this:
MyClassName.h
#import <UIKit/UIKit.h>
#interface MyClassName : NSObject {
NSObject *_myPropertyName;
}
#property (nonatomic, strong) NSObject *myPropertyName;
- (void)setMyPropertyName:(NSObject *)obj;
- (NSObject *)myPropertyName;
#end
MyClassName.m
#import "MyClassName.h"
#implementation MyClassName
- (void)setMyPropertyName:(NSObject *)obj
{
_myPropertyName = obj;
}
- (NSObject *)myPropertyName
{
return _myPropertyName;
}
#end
Again, all of this is happening for "free": I'm just showing you what's happening under the hood. Now for your numbered questions.
self.myPropertyName = [[[NSObject alloc] init] autorelease];
First of all, you should probably be using Automatic Reference Counting, or ARC. If you are, you won't be allowed to call autorelease. Ignoring that part, this works fine. Excluding the autorelease, this is exactly equivalent to:
[self setMyPropertyName:[[NSObject alloc] init]];
Which, if you look at the second .m file I wrote out, above, will basically translate to:
`_myPropertyName = [[NSObject alloc] init];
myPropertyName = [[NSObject alloc] init];
As written, this code will give a compiler error, since there is no variable called myPropertyName in this class. If you really want to access the instance variable underlying (or, "backing") the myPropertyName property, you can, by using its real name:
_myPropertyName = [[NSObject alloc] init]; // note the underscore
But most of the time, it's better to use the setter, as in point 1., since that allows for side effects, and for Key-Value Coding, and other good stuff.
_myPropertyName = [[NSObject alloc] init];
Oh. Well you got it. See point 2.
You mentioned that:
I'm confused with usages such as the place of myPropertyName declaration, its difference between instance variable. For example, what is the difference among these three statement of initialization code, for example, in the customized -(void)init method for my class myClassName.
In case it hasn't been made clear, a property is something of an abstract concept; its data is stored in a normal instance variable, typically assigned by the compiler. Its access should usually be restricted to the setter and getter, with important exceptions. To keep this answer short, I won't go into more detail than that.
One more thing: as nhgrif mentioned, you don't need to use the #synthesize keyword anymore. That is implicitly understood by the compiler now.
If you're not sure about any of this, post a comment or, better yet, read the docs.
Let's take this example:
#property NSString *fullName;
If in the implementation, we override the setters and getters, and in these setters and getters, we don't use an instance variable fullName, it is never created. For example:
- (NSString *)fullName
{
return [NSString stringWithFormat:#"%# %#", self.firstName, self.lastName];
}
- (void)setFullName:(NSString *)fullName
{
//logic to split fullName into two strings
//self.firstName = etc
//self.lastName = etc.
}
In this example, there is no instance variable for fullName created.
This is according to Apple's Official Documentation
If, however, you don't override both the setter and getter, an instance variable is created.
As a sidenote, you can declare a property readonly, and then simply overriding the getter (without using the variable) will prevent an ivar being created. Likewise, you can declare a property writeonly and just override the setter.

Objective-C setter/getter naming conventions drive me mad?

I have been trying to understand something for several hours and I would like to get your point of view.
I have setter/getter on one of my class properties (I noticed that I MUST add "set" in front of the setter name else the compiler says that there is no setter):
#property (nonatomic, retain, readwrite, setter=setTopString:, getter=TopString) NSString* m_topString;
When I call the setter like this, the compiler is happy:
[secureKeyboardController setTopString:#"This action requires that your enter your authentication code."];
But when I try to use the "dot" convention, then I am rejected by the compiler:
secureKeyboardController.topString = #"This action requires that your enter your authentication code.";
What is really weird is that the dot naming convention works fine with this property:
#property (nonatomic, readwrite, getter=PINMaxLength, setter=setPINMaxLength:) NSInteger m_PINMaxLength;
In this case i can do:
[secureKeyboardController setPINMaxLength:10];enter code here
or
secureKeyboardController.PINMaxLength = 10;
In both cases, the compiler is happy.
I really would like to fall asleep tonigh less stupid than I currently feel now. Thus any explanation would be greatly appreciated.
Regards,
Apple92
What you're doing is declaring properties as if you were declaring instance variables. You should not be using the names in the getter and setter attributes on the #property declaration with dot syntax; that it happens to be working now is not - so far as I know - by design.
The property should be what you use with dot syntax. For some reason - unfamiliarity with Cocoa coding conventions, I expect - you named your properties m_topString and m_PINMaxLength. That means you should use them as someObject.m_topString and someObject.m_PINMaxLength.
If you want to use those names for the instance variables that you've decided to use for the properties' backing storage, you should declare that in the #synthesize directive instead.
This is how your class should look, to be more in line with regular Cocoa and Objective-C coding conventions:
#interface SomeClass : NSObject {
#private
NSString *m_topString;
}
#property (nonatomic, readwrite, copy) NSString *topString;
- (id)initWithTopString:(NSString *)initialTopString;
#end
#implementation SomeClass
#synthesize topString = m_topString;
// this says to use the instance variable m_topString
// for the property topString's storage
- (id)initWithTopString:(NSString *)initialTopString {
if ((self = [super init])) {
m_topString = [initialTopString copy];
// use the ivar directly in -init, not the property
}
return self;
}
- (void)dealloc {
[m_topString release];
// use the ivar directly in -dealloc, not the property
[super dealloc];
}
- (NSString *)description {
return [NSString stringWithFormat:#"SomeClass (%#)", self.topString];
// elsewhere in your class, use the property
// this will call through its getter and setter methods
}
#end
You are trying to fight the compiler, and the compiler fights back.
You are trying to declare a property named m_topString with setter setTopString and getter TopString, and that is plainly stupid. You are writing Objective-C code, not C++. Your code will be a maintenance nightmare (unless the next maintainer is just sensible and changes your code to Objective-C conventions).
Do yourself a favour, start writing Objective-C code. Just call the property topString, don't pick your own names for the setter and getter, don't pick your own names for the instance variable, and everything works just fine.
Capitalize the T in TopString, i.e. secureKeyboardController.TopString
I'm 90% sure that will fix your problem.

How to provide additional custom implementation of accessor methods when using #synthesize?

I want to fire some code when a property is accessed and changed. I use #property and #synthesize in my code for my ivars. The properties are retained, so I'd like to keep that memory management stuff automatically generated by #synthesize.
However, I assume that #synthesize tells the compiler to generate the accessor methods code right where #synthesize is, so most of the cases at the top of the code, right?
And when I have a property foo, I get -setFoo and -foo methods. Could I then just make a method like this, to execute some more custom code when a property is changed?
-(void)setFoo {
// custom stuff
}
Now that's a problem. How to execute the first one? I wouldn't love to have a different name here. Is there maybe a way to let the #synthesize directive create other names for getter and setter methods, which I then call easily? And I would still be able to use the dot syntax then to access them?
You can use #property and #synthesize just like you normally would, but provide a custom setter or getter (or both) and those will be used instead. Typically I will do something like this:
// Override the setter
- (void)setName:(NSString *)aName
{
if (name == aName)
return;
[name release];
name = [aName retain];
//custom code here
}
When I use the set property, it will invoke my custom method. However, the get will still be synthesized.
If you provide an implemnetation for the setters or getters it will use that instead of the generated implementation. Its not hard to implement the "retaining" aspect of the getters and setters that are generated for you by the compiler when u synthesize, so you can just write your own getters and setters i would say and go with that.
One wacky solution is to create an abstract super class that does gives you the normal property synthesis.
Then create a concrete subclass that you will actually use, and that simply implements and override method (same signature) and calls super to do the actual setting.
This allows you to do whatever you want to do before or after the call to super's implementation.
Example:
#interface ALTOClassA : NSObject
#property NSString *catName;
#end
Nothing else needed in the .m beyond the stubbed file for this test.
Create the subclass, nothing needed specially in the #interface
#import "ALTOClassA.h"
#interface ALTOClassAJunior : ALTOClassA
#end
In the #implementation we do our override.
#import "ALTOClassAJunior.h"
#implementation ALTOClassAJunior
- (void)setCatName:(NSString*)aCatName {
NSLog(#"%#",NSStringFromSelector(_cmd));
[super setCatName:aCatName];
NSLog(#"after super: self.catName %#", self.catName);
}
#end
In use:
ALTOClassAJunior *aCAJ = [ALTOClassAJunior new];
NSLog(#"aCAS.catName %#", aCAJ.catName);
NSLog(#"set it to George.");
[aCAJ setCatName:#"George"];
NSLog(#"aCAS.catName %#", aCAJ.catName);
This allows you to leverage the autogenerated code, and still do stuff you want to do with your class. Abstract Super Class is often a useful solution for many things.
Yes, in your #property declaration, you can specify the getter and setter methods.
#property (readwrite,getter=privateGetFoo,setter=privateSetFoo:) NSObject * foo;
In your foo and setFoo: methods, call [self privateGetFoo] or [self privateSetFoo:f] then your custom code.
The object can also set an observer on itself with addObserver:forKeyPath:options:context:.
That said, I don't think either of these are very clean ways to do things. Better to write your own getter/setter as others have suggested.